Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...
Patent
1994-08-17
1999-03-30
Huff, Sheela
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Recombinant dna technique included in method of making a...
4351723, 435328, 4353201, 5303873, 4241331, A61K 39395, C07H 2104
Patent
active
058887733
ABSTRACT:
The invention relates to a method of producing single-chain Fv molecules in eukaryotic cells, and to secretable sFv proteins having at least one non-naturally occurring glycosylation site. The single-chain Fv molecules produced by this method are biologically active and capable of being secreted from eukaryotic cells into the cell culture medium.
REFERENCES:
Delente, J. J., Trends in Biotechnology vol. 3, No. 9.
Nicholls, P.J. et al., "An Improved Method for Generating Single-Chain Antibodies from Hybridomas," J. of Immuno. Methods, 165(27):81-91 (1993).
George, A.J.T. et al., "Redirection of T Cell-Mediated Cytotoxicity by a Recombinant Single-Chain Fv Molecule," J. Immunology, 152(4):1802-1811 (1994).
Hand, P.H. et al., "Potential for Recombinant Immunoglobulin Constructs in the Management of Carcinoma," Cancer, 73(3):1105-1113 (1994).
Jost, C.R. et al., "Mammalian Expression and Secretion of Functional Single-Chain Fv Molecules," J. Biol. Chem., 269(42) : 26267-26273 (1994).
Better, M. and Horwitz, A.H., "Expression of Engineered Antibodies and Antibody Fragments in Microorganisms," Methods in Enzymology, 178:476-496 (1989).
Biocca, S. et al., "Intracellular Expression of Anti-p21.sup.ras single Chain Fv Fragments Inhibits Meiotic Maturation of Xenopus Oocytes," Biochem. and Biophy. Res. Cumm., 197(2):422-427 (1993).
Davis, S.J. et al., "High Level Expression in Chinese Hamster Ovary Cells of Soluble Forms of CD4 T Lymphocyte Glycoprotein Including Glycosylation Variants," J. Bio. Chem., 265(18):10410-10418 (1990).
Eshhar, Z. et al. , "Specific Activation and Targeting of Cytotoxic Lymphocytes Through Chimeric Single Chains Consisting of Antibody-Binding Domains and the .gamma. or .zeta. Subunits of the Immunoglobulin and T-Cell Receptors," Proc. Natl. Acad. Sci. USA, 90:720-724 (1993).
Glockshuber, R. et al., "A Comparison of Strategies to Stabilize Immunoglobulin Fv-Fragments", Biochemistry, 29:1362-1367 (1990).
Hayano, T. et al., "Two Distinct forms of Peptidylprolyl-cis-trans-isomerase Are Expressed Separately in Periplasmic and Cytoplasmic Compartments in Escherichia coli Cells," Biochemistry, 30:3041-3048 (1991).
Hedrick. S.M. et al., "Sequence Relationships Between Putative T-Cell Receptor Polypeptides and Immunoglobulins," Nature, 308:153-158 (1984).
Hochstenbach, F. et al., "Endoplasmic Reticulum Resident Protein of 90 Kilodaltons Associates with the T-and B-Cell Antigen Receptors and Major Histocompatibility Complex Antigens during Their Assembly," Proc. Natl. Acad. Sci. USA,89:4737-4738 (1992).
Hurtley, S.M. and Helenius, A., "Protein Oligomerization in the Endoplasmic Reticulum," Annu. Rev. Cell. Biol.5:277-307 (1989).
Huston, J.S. et al., "Protein Engineering of Antibody of Antibody Binding Sites: Recovery of Specific Activity in an Anti-Digoxin Single-Chain Fv Analogue Produced in Escherichia coli," Proc. Natl. Acad. Sci. USA, 85:5879-5883 (1988).
Huston, J.S. et al., "Medical Applications of Single-Chain Antibodies," Intern. Rev. Immunol., 10:195-217 (1993).
Hwe, P. et al., "Lysis of Ovarian Cancer Cells by Human Lymphocytes Redirected with a Chimeric Gene Composed of an Antibody Variable Region and the Fc Receptor .gamma. Chain," J. of Exper. Medicine, 178:361-366 (1993).
Johnson, S. and Bird, R.E., "Construction of Single-Chain Fv Derivatives of Monoclonal Antibodies and their Production in Escherichia coli," Methods in Enzymology, 203:88-98 (1991).
Kearse, K.P. and Singer A., "Isolation of Immature and Mature T Cell Receptor Complexes by Lectin Affinity Chromatography," J. of Immunol. Methods, 167:75-81 (1994).
Knittler, M.R. and Haas, I.G., "Interaction of BiP with Newly Synthesized Immunoglobulin Light Chain Molecules: Cycles of Sequential Binding and Release," EMBO J. , 11(4) :1573-1581 (1992).
Kurucz, I. et al., "A Bacterially Expressed Single-Chain Fv Construct from the 2B4 T-Cell Receptor," Proc. Natl. Acad. Sci. USA, 90:3830-3834 (1993).
Marasco, W.A. et al., "Design Intercellular Expression, and Activity of a Human Anti-Human Immunodeficiency Virus Type 1 gp120 Single-Chain Antibody," Proc. Natl. Acad. Sci. USA, 90:7889-7893 (1993).
Jost, C.R. et al., "Mammalian Expression and Secretion of Functional Single-Chain Fv Molecules," IBM Antibody Conference, San Diego, Dec. 8-12 (1993).
Melnick, J. et al., "The Endoplasmic Reticulum Stress Protein GRP94, in Addition to BiP, Associates With Unassembled Immunoglobulin Chains," J. Biol. Chem., 267(30):21303-21306 (1992).
Nicholls, J. et al., "An Improved Method for Generating Single-Chain Antibodies from Hybridomas," J. Immunol. Methods, 165:81-91 (1993).
Novotny, J. et al., "A Soluble, Single-Chain T-Cell Receptor Fragment Endowed with Antigen-Combining Properties," Proc. Natl. Acad. Sci. USA, 88:8646-8650 (1991).
Olden, K. et al., "Carbohydrate Moieties of Glycoproteins, A Re-evaluation of Their Function," Biochimica et Biophysica Acta, 650:209-232 (1982).
Pollok, B.A. et al., "Molecular Basis of the Cell-Surface Expression of Immunoglobulin .mu. Chain Without Light Chain in Human B Lymphocytes," Proc. Natl. Acad. Sci. USA, 84:9199-9203 (1987).
Pelham, H.R.B., "Control of Protein Exit From the Endoplasmic Reticulum," Annu. Rev. Cell. Biol., 5:1-23 (1989).
Rothman, J.E. and Lodish, H.F., "Synchronised Transmembrane Insertion and Glycosylation of a Nascent Membrane Protein," Nature, 269:775-780 (1977).
Shu, L. et al., "Secretion of a Single-Gene-Encoded Immunoglobulin From Myeloma Cells," Proc. Natl. Acad. Sci. USA, 90:7995-7999 (1993).
Soo Hoo, W. F. et al., "Characterization of a Single-Chain T-Cell Receptor Expressed in Escherichia coli," Proc. Natl. Acad. Sci. USA , 89:4759-4763 (1992).
Stancovski, I. et al., "Targeting of T Lymphocytes to Neu/HER2-Expressing Cells Using Chimeric Single Chain Fv Receptors," J. Immunol., 151(11):6577-6582 (1993).
Tarentino, A.L. et al., "The Release of Intact Oligosaccharides From Specific Glycoproteins by Endo-.beta.-N-acetylglucosaminidase H," J. Biol. Chem., 249(3):818-824 (1974).
Traunecker, A. et al., "Bispecific Single-Chain Molecules (Janusins) Target Cytotoxic Lymphocytes on HIV Infected Cells," EMBO J., 10(12):3655-3659 (1991).
Ward, S.E., "Secretion of T Cell Receptor Fragments from Recombinant Escherichia coli Cells," J. Mol. Biol., 244:885-890 (1992).
Wen, D. et al., "Expression of Genes Encoding Vesicular Stomatitis and Sindbis Virus Glycoproteins in Yeast Leads to Formation of Disulfide-Linked Oligomers," Virology, 153:150-154 (1986).
Wright A. and Morrison, S.L., "Antibody Variable Region Glycosylatin: Biochemical and Clinical Effects," Spring Seminars Immunopathol, 15:259-273 (1993).
Co., M.S. et al., "Genetically Engineered Deglycosylation of the Variable Domain Increases the Affinity of an Anti-CD33 Monoclonal Antibody," Molecular Immunol., 30(15):1361-1367 (1993).
Holland, I.B. et al., "Secretion of Heterologous Proteins in Escherichia coli," Methods in Enzymology, 182:132-143 (1990).
Doral, H. et al., "Mammalian Cell Expression of Single-Chain Fv (sFv) Antibody Proteins and Their C-Terminal Fusions with Interleukin-2 and Other Effector Domains," Bio/Technology, 12:890-897 (1994).
Huston James S.
Jost Carolina R.
Segal David M.
Huff Sheela
Reeves Julie E.
The United States of America as represented by the Department of
LandOfFree
Method of producing single-chain Fv molecules does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of producing single-chain Fv molecules, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of producing single-chain Fv molecules will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1213696