Semiconductor device manufacturing: process – Bonding of plural semiconductor substrates – Thinning of semiconductor substrate
Reexamination Certificate
2000-09-28
2003-11-25
Trinh, Michael (Department: 2822)
Semiconductor device manufacturing: process
Bonding of plural semiconductor substrates
Thinning of semiconductor substrate
C438S455000, C438S480000
Reexamination Certificate
active
06653209
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method of producing a silicon thin film, in particular, to a method of controlling the thickness of a silicon thin film used in a SOI wafer etc. and of producing a silicon thin film. More particularly, the present invention relates to production of a silicon thin film of any desired thickness by decreasing the thickness of the silicon thin film through wet-cleaning.
2. Related Background Art
There are known the SIMOX (Separation by IMplantation of OXygen) method, the semiconductor bonding method and so forth as a method of producing a SOI wafer.
The SIMOX method uses a technique for forming a silicon oxide layer in a silicon substrate by implanting oxygen ions into the silicon substrate from its surface and then annealing the resultant substrate at a high temperature to form the silicon oxide layer at the portion where the oxygen ions have been implanted. In this method, the energy for implanting oxygen ions and the dose of the same cannot be set arbitrarily, but they are fixed to approximately constant conditions. Accordingly, it is difficult to set arbitrarily the thickness of the silicon film or that of the oxide film formed by ion implantation in the production of a SOI wafer.
On the other hand, there are several types of semiconductor bonding method. The first one is referred to as “bonding and polishing SOI” method.
In the “bonding and polishing SOI” method, two silicon wafers at least one of which has been oxidized, are previously prepared, bonded to each other at room temperature and annealed, and then polished from its one side, to leave a silicon film of a desired thickness on the silicon oxide layer. According to this method, both the thickness of the silicon layer and that of the implanted oxide layer can be set arbitrarily. In this method, however, as means of making a thin film of a silicon layer are solely used grinding and polishing. Accordingly, it is difficult to obtain a thin film of a uniform several hundred nm thickness because the limitations of the original thickness accuracy and polishing accuracy in the silicon wafer.
As the measures to overcome the above difficulty, a technique for forming an ultrathin film (100 nm thick or less) uniformly in which thickness distribution of a SOI film is measured instantly and dry-etching is performed relatively heavily at regions where the film is rather thick while dry-etching is performed relatively lightly at regions where the film is rather thin has been reported. This technique is referred to as PACE (Plasma Assisted Chemical Etching). The PACE system includes two units separated from each other: a unit for measuring instantly thickness of a SOI film at in-plane multiple points (10000 points or more) and a unit for performing plasma etching. The unit for performing etching has a plasma generating portion in the form of a nozzle and is designed in such a manner that the nozzle can move over a wafer along its surface and generate plasma according to the measurements of the thickness of the SOI layer so as to etch, for example, the rather thick regions relatively heavily. This technique allows the control of the etching amount from region to region within the wafer surface and hence the control of the absolute value and uniformity of the film thickness. However, the surface having been subjected to plasma-assisted etching has etching damage remaining thereon; accordingly, in many cases, the surface of the SOI layer is subjected to polishing so as to remove its damaged layer. This polishing operation may cause non-uniformity again in the film thickness of the SOI layer which has just been made uniform.
In another type of semiconductor bonding method, as disclosed in U.S. Pat. No. 5,374,564, a SOI structure is produced in the following three steps: implanting hydrogen ions in a silicon wafer having an oxide film formed thereon from its surface to form a brittle layer inside the wafer, bonding the wafer to another wafer, and heat-treating this bonded wafer or spraying a fluid (a liquid such as water or a gas such as nitrogen) on the side of this bonded wafer to separate the brittle layer.
In this method, the film thickness can be controlled by the thickness of the oxide film of the wafer prepared at the beginning and the energy for implanting hydrogen ions. However, in many cases, polishing is required as a finishing operation to the roughness of the separated SOI surface, which may cause again non-uniformity in the film thickness of SOI layer.
In still another type of semiconductor bonding method, as disclosed in U.S. Pat. No. 5,371,037 (Japanese Patent No. 2,608,351), Japanese Patent Application Laid-Open No. 5-21338 or Japanese Patent Application Laid-Open No. 7-302889, a SOI layer is produced in the following two steps: bonding an epitaxial silicon single crystal film grown on a substrate having a porous silicon thereon to another wafer via an oxide film and removing unnecessary portions. In this method, the thickness of the SOI layer is controlled through controlling the thickness of the epitaxial film and that of the oxide film.
In the step of selectively etching the porous silicon remaining on the surface of the SOI layer, the surface may become rough, as seen from the observation after completing the step; however, the rough surface can be changed into a very smooth surface by hydrogen annealing the surface of the SOI layer, as disclosed in Japanese Patent Application Laid-Open No. 5-218053. This method does not permit the deterioration of thickness distribution of the SOI layer to occur.
However, even in this method, it is not easy to form an ultrathin film with thickness 100 nm or smaller.
In the PACE method, the layer damaged by the plasma assisted etching and remaining on the surface of a SOI layer is removed; therefore the SOI layer must be formed to a little larger thickness allowing a little thickness for removing. However, the damaged layer is removed by polishing, thereby variations occur in film thickness distribution, which makes it difficult to form a uniform ultrathin film. For the same reason, in every and each method in which a SOI layer requires polishing, it is difficult to directly form an ultrathin film.
In the cases where the hydrogen annealing described above is adopted to smooth a SOI film, pinholes may be created. Microregions on the semiconductor bonding interface side of an ultrathin film can be stressed due to dust particles, which are too fine to measure with measuring instruments (90 nm or smaller), existing at the semiconductor bonding interface and due to surface irregularities of the wafer itself. If hydrogen annealing is performed in the presence of this stress, pinholes can be created at the portions the stress is established.
Meanwhile, when thickness of a SOI film required in designing a semiconductor device, such as transistor, is much thinner than the least possible thickness which can be supplied as a SOI wafer, or when SOI wafers of different thickness are required with change in design, supply of wafers cannot fully keep up with the demands.
In such a case, in order to obtain a SOI layer having a desired film thickness, manufacturers of semiconductor devices have to take the steps of: getting previously a SOI wafer having a SOI layer thicker than the designed one and subjecting the SOI layer to sacrificial oxidation in which the surface of the SOI layer is once subjected to thermal oxidation and then the oxidized portions are removed by etching.
However, performing sacrificial oxidation causes speed increasing oxidation the crystal defects existing in the SOI film and inhibits oxidation in the vicinity of the regions on which dust particles are deposited; as a result, surface roughness is caused on the surface of the SOI layer. This in turn causes deterioration of high pressure resistance of the oxide film in semiconductor devices.
SUMMARY OF THE INVENTION
Accordingly, the object of the present invention is to provide a method for controlling the thickness of a silicon thin film, a
Canon Kabushiki Kaisha
Fitzpatrick ,Cella, Harper & Scinto
Trinh Michael
LandOfFree
Method of producing silicon thin film, method of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of producing silicon thin film, method of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of producing silicon thin film, method of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3176868