Organic compounds -- part of the class 532-570 series – Organic compounds – Amino nitrogen containing
Reexamination Certificate
2000-10-12
2001-07-10
Richter, Johann (Department: 1621)
Organic compounds -- part of the class 532-570 series
Organic compounds
Amino nitrogen containing
C564S301000
Reexamination Certificate
active
06258983
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to inorganic synthesis techniques and more particularly to the inorganic synthesis of energetic oxidizer salts.
2. Description of the Related Art
Hydroxylamine nitrate (HAN) has been produced commercially by electrochemical treatment of nitric acid, by aqueous ion displacement, and by ion exchange. When using any of these synthesis methods, the product is an aqueous solution of HAN. A time and energy consuming vacuum evaporation of water technique is necessary to extract solid HAN from the solution. The water from such an aqueous solution of HAN becomes more difficult to remove as the HAN concentration increases. This requires ever increasing vacuum and temperature conditions to complete the extraction process. These operating conditions make a processing plant vulnerable to an accident; the loss of vacuum or an air leak would result in air mixing with the hot HAN solution, causing a fume-off and possibly a detonation. Addition of an alcohol or other solvent which forms a water azeotrope can improve the water removal and reduce the danger of an accident. However, the process remains difficult, expensive, and dangerous.
Other HAN production techniques involve the reaction of hydroxylamine sulfate with various reagents to produce an aqueous or an alcoholic solution of hydroxylamine which is then neutralized with nitric acid to produce a solution of HAN. Examples of these methods are found in U.S. Pat. Nos. 4,954,328 and 4,956,168. As with the method above, these processes produce solutions of HAN and not HAN salt. Hazardous, energy expensive processes of distillation or evaporation are still required to isolate the salt from solution.
Therefore, it would be desirable to provide a simpler, safer, less expensive method of producing HAN salt.
SUMMARY OF THE INVENTION
This invention comprises a process of producing solid HAN by slowly adding nitric acid to an alcoholic solution of hydroxylamine.
Accordingly, an object of this invention is to provide a new method of producing solid HAN.
Another object of this invention is to provide a more economical, less hazardous way of producing solid HAN.
A further object of this invention is to provide a method of producing solid HAN without the use of distillation or evaporation steps.
This invention accomplishes these objectives and other needs related to improvement of venting heat from combustion gases in a rocket motor.
DESCRIPTION OF THE PREFERRED EMBODIMENT
The invention, as embodied herein, comprises a process of producing HAN by slowly adding nitric acid to an alcoholic solution of hydroxylamine. This forms a precipitate of solid HAN. However, if more nitric acid is added, the precipitate dissolves before the stoichiometric amount of acid has been added. Therefore, just enough nitric acid is added to form a maximum amount of solid HAN precipitate. The solid HAN is then isolated by conventional means such as filtration or centrifugation. The excess alcoholic solution of unreacted hydroxylamine may be recycled and used as starting material in the process.
The dissolution of the solid HAN discussed above by adding excess nitric acid results from the presence of water in the nitric acid solution. Thus, using a higher concentration solution of nitric acid, such as 90% versus 60%, of nitric acid will result in a higher recovery yield of solid HAN.
Alternatively, the nitric acid could be used to partially or totally neutralize the alcoholic solution of hydroxylamine resulting in a HAN-alcohol-water slurry. This slurry could be chilled below the solubility point of HAN and the crystalline HAN could be recovered through filtration.
The alcoholic solutions of hydroxylamine can be prepared by reaction of hydroxylamine sulfate and ammonia as disclosed in U.S. Pat. No. 4,956,168, titled “Synthesis of Hydroxylamine Salts,” issued to Kerry L. Wagaman on Sep. 11, 1990, hereby incorporated by reference in its entirety. The alcoholic solutions of hydroxylamine can also be prepared by the reaction of hydroxylamine sulfate with an alkali metal alkoxide such as sodium methoxide or sodium ethoxide as disclosed in U.S. Pat. No. 4,954,328, titled “Synthesis of Hydroxylamine Salts,” issued to Kerry L. Wagaman on Sep. 4, 1990, hereby incorporated by reference in its entirety. Other methods of preparing the alcoholic solutions of hydroxylamine may be used, however, lower alcohols of from 1 to 3 carbon atoms are preferable. Methanol, ethanol, or a mixture thereof are most preferable.
The nitric acid is an aqueous solution which has a HNO3 concentration of preferably from about 60% by weight to about 90% by weight and more preferably from about 60% by weight to about 72% by weight. The preferred concentrations are commercially available and would have fewer side reactions.
During the reaction, both the time when the crystalline HAN begins to precipitate and when it subsequently redissolves in the alcohol-hydroxylamine-water mixture are dependent on the concentrations of the hyroxylamine, hydroxylamine nitrate, alcohol, and water. In addition, the times depend on the temperature of the reaction mixture and the alcohol used. By proper selection of the concentration of the hydroxylamine solution and of the nitric acid solution, this chemical process may proceed as either a batch or continuous process.
The initial concentration of the alcoholic hydroxylamine solution is preferably from about 10% by weight to about 15% by weight and more preferably from about 14% by weight to about 15% by weight hydroxylamine with the remainder of the solution being ethanol. Another preferred embodiment has the initial concentration of the alcoholic hydroxylamine solution from about 15% by weight to about 35% by weight and more preferably from about 25% by weight to about 35% by weight with the remainder of the solution being methanol.
The nitric acid is an aqueous solution of HNO3, wherein the solution contains from about 60% by weight to about 90% by weight HNO3 and more preferably 60% by weight to about 72% by weight HNO3 with the remainder being water.
During the addition of the nitric acid solution to the alcoholic hydroxylamine solution, the solution temperature is preferably kept below 55° C. and more preferably below 20° C. The solution is also preferably agitated during the addition of the acid to prevent localized overheating.
The general nature of the invention having been set forth, the following examples are presented as specific illustrations thereof. It will be understood that the invention is not limited to these specific examples, but is susceptible to various modifications that will be recognized by one of ordinary skill in the art.
For all of the following examples, tables 1 and 2 show the freezing points of aqueous solutions of methanol and of aqueous solutions of ethanol. Table 3 lists the solubility of hydroxylamine of 35% by weight and 15% by weight in anhydrous methanol and ethanol solutions at the respective temperatures of 5° C. and 15° C. Table 4 shows the freezing points and solution densities for various HAN-ethanol-water slurries. Although specific amounts of substances are used in the below examples, one skilled in the art could use tables 1-4 and the invention disclosed herein to obtain varying results as necessary.
TABLE 1
Freezing Points of Methanol-Water Mixtures
(From Ewert M., Bull. Soc. chim. (Belg), 46, 90 (1937))
% methanol
8.6
23.7
37.2
48.9
59.3
64
68.5
72.7
77.5
80.6
82.1
87.7
91.6
100
Freezing Pt.
−5
−20
−35
−52.5
−72
−85
−104.5
−105.5
−110
−117.5
−125
−117
−110
−98
° C.
TABLE 1
Freezing Points of Methanol-Water Mixtures
(From Ewert M., Bull. Soc. chim. (Belg), 46, 90 (1937))
% methanol
8.6
23.7
37.2
48.9
59.3
64
68.5
72.7
77.5
80.6
82.1
87.7
91.6
100
Freezing Pt.
−5
−20
−35
−52.5
−72
−85
−104.5
−105.5
−110
−117.5
−125
−117
−110
−98
° C.
TABLE 3
Solubility of Hydroxylamine in Various Solvents
(From De
Homer Mark
Richter Johann
The United States of America as represented by the Secretary of
Witherspoon Sikarl A.
LandOfFree
Method of preparing solid hydroxylamine nitrate does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of preparing solid hydroxylamine nitrate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of preparing solid hydroxylamine nitrate will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2560405