Communications: directive radio wave systems and devices (e.g. – Directive – Including a satellite
Patent
1992-04-23
1993-10-12
Sotomayor, John B.
Communications: directive radio wave systems and devices (e.g.,
Directive
Including a satellite
342352, 342451, 342463, G01S 508, H04B 7185
Patent
active
052529827
DESCRIPTION:
BRIEF SUMMARY
BACKGROUND OF THE INVENTION
The invention relates to a method of precise position determination.
Such a method is known from Beutler, G., D. A. Davidson, R. Langley, R. Santerre, P. Vanicek, D. E. Wells (1984) in "Some Theoretical and Practical Aspects of Geodetic Positioning using Carrier Phase Difference Observations of GPS Satellites," Reports by the Zimmerwald satellite observation station, No. 14 and Department of Surveying Engineering Technical Report No. 109, University of New Brunswick, Fredericton, Canada, pp. 1-41, 78, 79, as relative static positioning using the GPS Navstar satellite navigation system.
An overview of the GPS system, the measurement variables and relative positioning is given in the Company Prospectus "GPS--The Surveying System of the Future" Wild Heerbrugg Ltd., Heerbrugg, Switzerland, 1987.
A navigation system based on the Doppler method for various installed radio satellite systems is known from EP-B 0,167,683.
In the known method for relative static positioning, measurement times of about one hour are required with five available transmitters to determine the relative position of two points 10 km apart to an accuracy in the region of one cm.
Approaches to speeding up the measurement by means of an optimized evaluation method are known from Frei, E., G. Beutler "Some Considerations Concerning an Adaptive, Optimized Technique to Resolve the Initial Phase Ambiguities", Proceedings of the Fifth International Geodetic Symposium on Satellite Positioning, Mar. 15-17, 1989, pp. 671-686, Las Cruces, New Mexico; Remondi, B. W. "Performing Centimeter Level Surveys in Seconds with GPS Carrier Phase: Initial Results". Proceedings of the Fourth International Geodetic Symposium on Satellite Positioning, Apr. 18-May 2, 1986, pp. 1229-1249, Austin, Tex.; Beutler, G., W. Gurtner, M. Rothacher, U. Wild, E. Frei "Relative Static Positioning with the Global Positioning System: Basic Technical Considerations" lecture to the IAG General Meeting, Edinburgh, August 1989; and V. Ashkenazi, P. I. Summerfield "Rapid static and kinematic GPS surveying: with or without cycle slips". Land and Minerals Surveying, Vol. 7, No. 10, 10/89, pages 489-494 (GB Journal). The content of the quoted references is part of the disclosure of this application.
The quasi-kinematic method described therein according to Remondi (loc. cit.) results in a saving in measurement time only in the case of a sequence of measurements at different points and is dependent on a receiver being able to be transported from point to point in radio contact with the transmitters, without interference. However, in general this condition is difficult to adhere to and difficult to check. Ashkenazi and Summerfield (loc. cit) solve this problem by repeated measurement at the first measurement point. The method specified by Frei and Beutler for rapid resolution of the phase ambiguity uses only the a posteriori rms error in a method according to the precharacterizing clause of claim 1 and tests all the complete alternative phase ambiguities located within an interval of plus or minus three times the a posteriori rms errors around the actual phase ambiguities for the magnitude of the rms error of the positioning vector.
With measurement times of a few minutes, this method is adequate only if 7 to 8 satellites can be received or if measurements from 5 to 6 satellites can be used on two frequencies (L1 and L2).
It is also known, from Beutler et al. for it to be possible to achieve an improvement in the method described be repeated measurement with a time interval.
SUMMARY OF THE INVENTION
It is thus the object of the invention, based on a method of precise position determination of the generic type, to achieve a significant shortening of the measurement time and/or a reduction in the number of received transmitters and frequencies, the intention being to determine each individual position independently of others or of additional preconditions. The cost in terms of computer capacity and computing time is intended to be minimal. If the transmitters a
REFERENCES:
Frei et al., "Some Considerations Concerning an Adaptive, Optimized Technique to Resolve the Initial Phase Ambiguities for Static and Kinematic GPS Surveying-Techniques", Procedings of the Fifth International Geodetic Symposium on Satellite Positioning, Mar. 1989, pp. 671-686.
Remondi et al., "Performing Centimeter-Level Surveys in Seconds with GPS Carrier Phase: Initial Results", Proceedings of the Fourth International Geodetic Symposium on Satellite Positioning, Apr.-May, 1986, pp. 1229-1249.
Beutler, et al., "Relative Static Positioning with the Global Positioning System: Basic Technical Considerations", IAG General Meeting, Aug., 1989, pp. 20-26.
Ashkenazi et al., "Rapid Static and Kinematic GPS Surveying: With or Without Cycle Slips", Land and Minerals Surveying, vol. 7, No. 10, Oct., 1989, pp. 489-494.
Scherrer, et al., "GPS--The Surveying System of the Future", Wild Heerbrugg Ltd., 1987.
Beutler, et al., "Some Theoretical and Practical Aspects of Geodetic Positioning Using Carrier Phase Difference Observations of GPS Satellite", No. 14, pp. 1-79.
Bossler, et al., "Using the Global Positioning System (GPS) for Geodetic Positioning", Bulletin Geodesique, vol. 54, No. 2, 1980, pp. 553-563.
Beutler et al., "Using the Global Positioning System (GPS) for High Precision Geodetic Surveys: Highlights and Problem Areas", IEEE Plans 1986, Position and Navigation Symposium, Nov., 1986 pp. 243-250.
Vanicek, P., et al., "Geodesy: The Concepts", Second Edition, North Holland, 1986, pp. 214-241.
Beutler, G., "Exemplary Processing of a 1989 Campaign in the Swiss Alps", Astronomical Institute University of Berne, 1989.
Leica Heerbrugg A.G.
Sotomayor John B.
LandOfFree
Method of precise position determination does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of precise position determination, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of precise position determination will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1907825