Semiconductor device manufacturing: process – Chemical etching – Combined with the removal of material by nonchemical means
Reexamination Certificate
2000-02-14
2001-11-13
Mills, Gregory (Department: 1763)
Semiconductor device manufacturing: process
Chemical etching
Combined with the removal of material by nonchemical means
C438S749000, C438S754000, C438S756000, C438S700000, C438S216000, C438S089000
Reexamination Certificate
active
06316366
ABSTRACT:
BACKGROUND OF THE INVENTION
(1) Field of the Invention
This invention concerns a chemical mechanical polishing slurry including at least two oxidizers, one of which is urea hydrogen peroxide. The chemical mechanical polishing slurry may be made by combining a polishing slurry precursor including urea with hydrogen peroxide. The resulting slurry is useful for polishing metal layers and thin-films associated with semiconductor manufacturing. More particularly this invention concerns a chemical mechanical polishing slurry that is especially adapted for polishing multiple metal layers and thin-films where one of the layers or films is comprised of aluminum or an aluminum containing alloy and another layer or thin film is comprised of titanium or a titanium containing alloys or compounds such as titanium nitride.
(2) Description of the Art
Integrated circuits are made up of millions of active devices formed in or on a silicon substrate. The active devices, which are initially isolated from one another, are interconnected to form functional circuits and components. The devices are interconnected through the use of well-known multilevel interconnections. Interconnection structures normally have a first layer of metallization, an interconnection layer, a second level of metallization, and sometimes a third and subsequent level of metallization. Interlevel dielectrics such as doped and undoped silicon dioxide (SiO
2
), are used to electrically isolate the different levels of metallization in a silicon substrate or well. The electrical connections between different interconnection levels are made through the use of metallized vias. U.S. Pat. No. 4,789,648, which is incorporated herein by reference, describes a method for preparing multiple metallized layers and metallized vias in insulator films. In a similar manner, metal contacts are used to form electrical connections between interconnection levels and devices formed in a well. The metal vias and contacts may be filled with various metals and alloys including titanium (Ti), titanium nitride (TiN), tantalum (Ta), aluminum copper (Al—Cu), aluminum silicon (Al—Si), copper (Cu), tungsten (W), and combinations thereof. The metal vias and contacts generally employ an adhesion layer such as titanium nitride (TiN) and/or titanium (Ti) to adhere the metal layer to the SiO
2
substrate. At the contact level, the adhesion layer acts as a diffusion barrier to prevent the filled metal and SiO
2
from reacting.
In one semiconductor manufacturing process, metallized vias or contacts are formed by a blanket metal deposition followed by a chemical mechanical polish (CMP) step. In a typical process, via holes are etched through an interlevel dielectric (ILD) to interconnection lines or to a semiconductor substrate. Next, a thin adhesion layer such as titanium nitride and/or titanium is generally formed over the ILD and is directed into the etched via hole. Then, a metal film is blanket deposited over the adhesion layer and into the via hole. Deposition is continued until the via hole is filled with the blanket deposited metal. Finally, the excess metal is removed by chemical mechanical polishing, (CMP) to form metal vias. Processes for manufacturing and/or CMP of vias are disclosed in U.S. Pat. Nos. 4,671,851, 4,910,155 and 4,944,836.
In a typical chemical mechanical polishing process, the substrate is placed in direct contact with a rotating polishing pad. A carrier applies pressure against the backside of the substrate. During the polishing process, the pad and table are rotated while a downward force is maintained against the substrate back. An abrasive and chemically reactive solution, commonly referred to as a “slurry” is applied to the pad during polishing. The slurry initiates the polishing process by chemically reacting with the film being polished. The polishing process is facilitated by the rotational movement of the pad relative to the substrate as slurry is provided to the wafer/pad interface. Polishing is continued in this manner until the desired film on the insulator is removed. The slurry composition is an important factor in the CMP step. Depending on the choice of the oxidizing agent, the abrasive, and other useful additives, the polishing slurry can be tailored to provide effective polishing to metal layers at desired polishing rates while minimizing surface imperfections, defects and corrosion and erosion. Furthermore, the polishing slurry may be used to provide controlled polishing selectivities to other thin-film materials used in current integrated circuit technology such as titanium, titanium nitride and the like.
Typically CMP polishing slurries contain an abrasive material, such as silica or alumina, suspended in an oxidizing, aqueous medium. For example, U.S. Pat. No. 5,244,523 to Yu et al. reports a slurry containing alumina, hydrogen peroxide, and either potassium or ammonium hydroxide that is useful to remove tungsten at predictable rates with little removal of the underlying insulating layer. U.S. Pat. No. 5,209,816 to Yu et al. discloses a slurry comprising perchloric acid, hydrogen peroxide and a solid abrasive material in an aqueous medium that is useful for polishing aluminum. U.S. Pat. No. 5,340,370 to Cadien and Feller discloses a tungsten polishing slurry comprising approximately 0.1M potassium ferricyanide, approximately 5 weight percent silica and potassium acetate. Acetic acid is added to buffer the pH at approximately 3.5.
U.S. Pat. No. 4,789,648 to Beyer et al. discloses a slurry formulation using alumina 5 abrasives in conjunction with sulfuric, nitric, and acetic acids and deionized water. U.S. Pat. Nos. 5,391,258 and 5,476,606 disclose slurries for polishing a composite of metal and silica which includes an aqueous medium, abrasive particles and an anion which controls the rate of silica removal. Other polishing slurries for use in CMP applications are described in U.S. Pat. No. 5,527,423 to Neville et al., U.S. Pat. No. 5,354,490 to Yu et al., U.S. Pat. No. 5,340,370 to Cadien et al., U.S. Pat. No. 5,209,816 to Yu et al., U.S. Pat. No. 5,157,876 to Medellin, U.S. Pat. No. 5,137,544 to Medellin, and U.S. Pat. No. 4,956,313 to Cote et al.
It has been recognized that CMP slurries that are used to polish multiple metal layers in a single step typically exhibit a low polishing rate towards at least one of the metal layers. As a result, the polishing step is lengthened or operated at aggressive polishing conditions that can cause undesirable erosion of the SiO
2
layer and recessing of the metal vias and/or metal lines. Such recessing causes a non-planar via layer or metal line layer to be formed which impairs the ability to print high resolution lines during subsequent photolithography steps and can cause the formation of voids or open circuits in the formed metal interconnections. Additionally, recessing increases when over polishing is used to ensure complete removal of the titanium, titanium nitride, and aluminum films across the surface of a wafer. Thus, a need remains for CMP slurries which reliably polish a plurality of metal layers including a titanium layer in an integrated circuit. Accordingly, a new CMP polishing slurry that polishes titanium at a higher rate is needed to overcome the present substrate manufacturing reliability issues imposed by the current CMP polishing slurries.
In addition there is a need to formulate chemical mechanical polishing slurries and precursors thereof in a manner that avoids the use of hydrogen peroxide or in a manner that eliminates hydrogen peroxide from products shipped to customers because of its instability.
SUMMARY OF THE INVENTION
The present invention is directed to a single chemical mechanical polishing slurry that includes urea hydrogen peroxide. In addition to acting as an oxidizer, the urea hydrogen peroxide is more stable than hydrogen peroxide alone and it help stabilize other slurry components such as additional oxidizers.
In addition, the chemical mechanical polishing slurry is able to polish aluminum alloy, titanium, and titanium nitride layers at acce
Brusic Kaufman Vlasta
Wang Shumin
Cabot Microelectronics Corporation
Goudreau George
Mills Gregory
Turner-Brim Phyllis T.
LandOfFree
Method of polishing using multi-oxidizer slurry does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of polishing using multi-oxidizer slurry, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of polishing using multi-oxidizer slurry will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2614263