Method of platlet function analysis using platelet count

Chemistry: analytical and immunological testing – Clotting or clotting factor level tests

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C436S063000, C422S067000, C422S073000, C073S064410

Reexamination Certificate

active

06410337

ABSTRACT:

This invention relates to determination of platelet function (aggregation, agglutination, and adhesion) using a differential cell counting technique. More specifically, the invention relates to the use of a common laboratory based instrumentation technology in a new method for determining the viability of platelets and platelet function and adhesion by obtaining a platelet count in the instrument before and after intentional platelet activation.
BACKGROUND
Platelets are biological cells in blood circulation that provide the first line of hemostatic defense. They contribute the initial physiology and biochemistry to maintain normal circulatory integrity to help prevent exsanguination or bleeding to death upon injury, especially venous or vascular injury. Life cannot be maintained without adequate platelet numbers and without some meaningful degree of platelet functionality or quality.
Platelets are irregularly-shaped, colorless bodies which are normally present in blood at the level of about 250,000 cells per mm
3
. Their sticky surfaces, along with other endogenous substances or stored chemicals, act to form primary platelet plugs and ultimately, stable blood clots to stop or arrest bleeding. When bleeding from a wound suddenly occurs, the platelets stick to the wound site and release substances that cause them to gather (aggregate), en masse at the venous injury. This prevents excessive blood from escaping the vasculature, thus preventing irreversible morbidity and mortality. Other coagulation proteins in the blood in concert with the platelets form a fibrin clot usually within minutes.
Coagulation (or blood clotting) and platelet activation, adhesion, and aggregation occur when blood is exposed to non-biological material including any material that is dissimilar to venous endothelium and more importantly, biological materials such as an injured blood vessel. Often, during the routine practice of medicine, blood may be exposed to a hostile, platelet-activating environment such as contact with an extracorporeal blood circuit or the results of invasive procedures that injure the vascular lining or exposure of the blood to air. The platelets normally respond to this condition and begin to activate. After activating, the platelets react with specific coagulation plasma proteins and fibrinogen to begin forming fibrin, tiny thread-like visible strands of protein. These fibrin threads link to form a web-like mesh that traps red cells, white cells, and platelets, leading to the formation of a stable or insoluble clot. On the skin surface, the blood clot is ultimately transformed from an initial plug to arrest bleeding to a healing process in which the blood clot becomes a crusty protective layer of cells (scab).
Platelets that have the ability to activate are commonly called “sticky” and “functional” platelets. The extent to which these platelets activate or perform qualitatively is variously called platelet activity, platelet function, platelet aggregation, or platelet adhesion. Once the platelet has performed its qualitative aggregation function fully, the endogenous biochemistry has been consumed and cannot be recharged or revitalized. The sticky or adhesive quality of the platelet may still provide hemostatic support in microcirculatory physiology, but the biochemical aggregating quality of the platelet is a one time event or occurrence.
Platelet quality is also affected both positively and negatively by contemporary over-the-counter drugs and by hospital-based pharmacology compounds. Platelet function characteristics may also be manipulated by certain agents to better control specific medical procedures and surgeries. Some compounds are used to slightly alter platelet function by causing intentional temporary dysfunctionality, as in the case of aspirin therapy, for heart disease patients who are more prone to thrombosis or clot. Aspirin is used to minimize platelet adhesion and cause qualitative platelet defects that are nevertheless beneficial to patient well-being.
Clinically, platelet assessment is a very useful parameter and provides relevant information regarding a patient's hemostatic or bleeding status and thrombotic state.
Even though platelets are uniquely associated with, and are a contributor to thrombosis, a leading cause of morbidity and mortality, the technology to measure and predict platelet physiology is lacking and sorely needed. There are a very limited number of ways (mostly unsatisfactory) to measure platelet function both qualitatively and quantitatively. Notable accepted laboratory methods include:
Bleeding Time (a qualitative, not quantitative, measure): In this procedure, a small invasive incision is made in the forearm after placing a blood pressure cuff on the same arm and inflating it to 40 mm Hg. As blood exudes from the wound it is blotted with filter paper, and the time at which bleeding stops is recorded. The normal bleeding time is usually less than 9-10 minutes. The Bleeding Time test is commonly performed as part of the pre-operative patient screen. The test is laborious and expensive and the time and personnel requirements prevent this test from being performed routinely or even effectively in the operating room.
Platelet Aggregometry (quantitative platelet measurement considered to be the reference method): This assay measures the level or percent of functionality platelet activity in patient plasma and is reported in percent platelet aggregation. The assay is performed by briefly pre-incubating normal human platelet-rich plasma and adding a known platelet aggregation agent (e.g. ristocetin, collagen, etc.) in a traditional platelet aggregometer. Aggregometry works on a simple photometric principle and does not use a numeric counting technique. The amount of light that passes through a platelet-rich plasma sample in aggregometry is low and is electronically calibrated to zero. This is compared to maximum or 100 percent light transmission through platelet-poor plasma (sometimes called platelet-free plasma), due to the lack of light absorption by the platelets.
By adding a platelet aggregating agent to the platelet-rich plasma, the platelets are caused to clump or aggregate and separate from the liquid phase. Light transmission thus increases as the platelet-rich plasma sample becomes more translucent as compared to the 100 percent light transmission of control platelet-poor plasma. The principle of this test is that the interaction between the aggregating agent and the platelets causes the activation of the platelets, subsequently leading to platelet activation, adhesion, and aggregation, or simple “clumping”. The functional platelets are thus trapped in the platelet aggregate or “clump”. This clumping allows an increasing proportionate level of light to now pass through the platelet-rich plasma patient sample. The difference in the two samples (pre-clump and post-clump) are compared as a percentage. The level of functional platelets or percent aggregation is determined by comparison of the percent difference between light transmission of platelet-poor plasma and that of platelet-rich plasma following the addition of the known aggregating agent.
Normal platelets and disease or damaged platelets are accurately characterized by using a variety or combination of chemicals or known aggregating agents. When these agents are used in known concentrations, an accurate depiction of disease and seriousness of platelet damage or dysfunction can be identified when using the aggregometer. There are numerous platelet adhesion and aggregating agents with differing platelet response. Concentrations of aggregating agents has become specific to diagnostic, disease, and dysfunctionality.
Aggregating agents or platelet activation agonists referred to above may include adenosine 5′ di-phosphate, adenosine tri-phosphate, serotonin, thromboxane, collagen, epinephrine, thrombin, ristocetin, arachidonic acid, and the like. They may be used as aggregating agents and agonists in the present invention as well.
The adhesion or “sticky” quality of platelets can

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of platlet function analysis using platelet count does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of platlet function analysis using platelet count, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of platlet function analysis using platelet count will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2892058

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.