Computer graphics processing and selective visual display system – Display peripheral interface input device – Touch panel
Reexamination Certificate
1999-07-14
2002-01-01
Shalwala, Bipin (Department: 2673)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Touch panel
C345S215000, C345S215000, C345S215000, C345S215000
Reexamination Certificate
active
06335725
ABSTRACT:
FIELD OF INVENTION
This invention relates to a method of using a touch-screen input panel on a computing device and more particularly to a method of using a touch-screen input panel in a handheld personal computer (H/PC).
BACKGROUND
Several types of input devices for computers are available. One such input device is the familiar “mouse”. To date, the “mouse” is by far the most popular input device used with desk top computer systems. Generally, they provide a user-friendly input device for computer systems for both technical and non-technical applications. The popularity which these devices have achieved in the art has fostered the explosive growth of the personal computer industry, since they provide users a simple means to input data to the computers.
A mouse generally requires a flat surface on which it can interface to operate. The mouse couples to the flat surface to translate movement of the mouse to an input signal for processing by a computer. There are several types of mouse devices, all of which require a flat surface to operate. Thus, the mouse is unsuitable for any work area which cannot provide space for such a surface. The current and growing popularity of laptop and notebook computers thus has created a significant problem for mouse-type technologies which require a surface to operate. Laptops and notebooks are generally used in small, confined areas such as, for example, airplanes, where there is insufficient room to provide such a surface.
Designers of laptops and notebooks have come up with a tactile sensing input device which does not require a surface. Such a tactile sensing device uses several technologies to determine an object's position on the grid. These technologies used include electrodes, resistive networks, surface acoustic waves and other types of technology. The tactile sensing or touch-sensitive device translates the touch location to input signals for processing by a computer. Unlike the use of a mouse to position a cursor, a user touches and moves a finger on the touch sensitive device to position a cursor. There is no need for an external surface for such a touch sensitive device to work. This touch-sensitive device is integrated into a casing of a laptop or a notebook computer, usually in a medial position, adjacent to a keyboard and close to a user. With this device, a user can operate a laptop or notebook computer in a confined area, requiring only enough space to support the computer. However this touch-sensitive device, which usually has a touch surface measuring approximately 1.5 by 2 inches, is unsuitable for any computing device which is smaller in size than a laptop or a notebook computer. Handheld personal computers (H/PCs) which are built to fit comfortably into a user's palm cannot possibly accommodate such a touch-sensitive device without an increase in its physical size. Thus, there is still a problem with space when smaller-sized computers are desired.
Designers of H/PCs have solved the space problem by using yet another type of input devices. These input devices are generally designed to overlay a H/PC display and do not occupy more space than the display. These display devices are also touch sensitive and are generally known as digitizers or touch panels. A touch panel has a conductive faceplate. A touch anywhere on this conductive faceplate changes electrical impedances on the faceplate's conductive coating. These impedances when measured can be used to indicate the location of the touch. The impedances are measured at electrodes located on different edges of the faceplate. These devices generally meet the need of a H/PC user when the H/PC is placed on a firm surface. However, when on the move, it is inconvenient for a user to hold the H/PC in one hand and to use a stylus to operate the touch panel. The user will find it difficult to aim the tip of the stylus at indicia on the H/PC touch panel when on the move.
Hard icons located on one side of a touch panel are provided on some H/PCs to allow easier operation of these H/PCs while being used on the move. A user uses these hard icons to enter commonly-used inputs while on the move. Some examples of these commonly-used inputs are scrolling up, scrolling down and switching of application type of inputs. These hard icons cannot be used to capture an entire range of inputs which a full-screen touch panel allows. There are several disadvantages associated with these hard icons. One disadvantage is the limited space on a touch panel on which only a couple of hard icons can be accommodated. Thus, only a handful of features can be activated using this limited number of hard icons. Another disadvantage of hard icons is that user-programmable hard icons do not truly reflect underlying features with which the hard icons are programmably associated. Another disadvantage of hard icons is that they are not application-specific but are global. The hard icons may have to be programmed to suit different applications.
The foregoing therefore creates the need for a more user-friendly method of inputting data into a H/PC.
SUMMARY
In one aspect, an input and output system embodying the invention is mounted on an electronic device. This electronic device is used for executing an application software. The input and output system has a display and an input touch panel. The input touch panel is mounted overlying the display. The input touch panel is partitionable into a main input portion and a secondary input portion. The application software is able to receive a first set of input commands through the main input portion. The secondary input portion is used by the application software to receive a second set of input commands selected from the first set of input commands. A digit on a hand that is used to hold the electronic device can access this secondary input portion.
In another aspect, the present invention may be implemented as a method of using an input touch panel on an electronic device which also has a display. The method preferably includes partitioning the input touch panel into a main input portion and a secondary input portion for a user to interact with an application software running on the electronic device. The application software displays appropriate information on the display to indicate that the input touch panel is partitioned. Preferably, the user is able to enter a first set of input commands using the main input portion. These input commands are preferably entered using a stylus. The secondary input portion is preferably for the user to enter a second set of input commands, which is selected from the first set of input commands. The secondary input portion is accessible by a digit on a hand that is used to hold the electronic device.
REFERENCES:
patent: 5119079 (1992-06-01), Hube et al.
patent: 5297253 (1994-03-01), Meisel
patent: 5682529 (1997-10-01), Hendry et al.
patent: 5745116 (1998-04-01), Pisutha-Arnond
patent: 6011554 (2000-01-01), King et al.
patent: 6037937 (2000-03-01), Beaton et al.
patent: 6181344 (2001-01-01), Tarpenning et al.
Choo Kok Seng
Koh Joo Beng
Hewlett--Packard Company
Lewis David L
Shalwala Bipin
LandOfFree
Method of partitioning a touch screen for data input does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of partitioning a touch screen for data input, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of partitioning a touch screen for data input will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2834522