Method of operating an internal combustion engine

Internal-combustion engines – Combustion chamber means having fuel injection only – Having a particular relationship between injection and...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S435000, C123S090150

Reexamination Certificate

active

06742494

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a method of operating an internal combustion engine, more specifically a four-cycle internal combustion engine, that relies for operation, in at least one operational range, on the autoignition of an at least almost homogeneous fuel-air mixture, the combustion being measured and at least one parameter for the combustion in the next cycle being set in function of a signal obtained from this measurement. Furthermore, the invention relates to a device for carrying out this method.
DESCRIPTION OF PRIOR ART
The combustion of an auto-ignited lean fuel-air mixture has the advantage that extremely low NO
x
and soot emissions are obtained on account of the homogeneous distribution of concentration and temperature. This process is known as HCCI combustion (Homogeneous Charge Compression Ignition). HCCI combustion results in low NO
x
emissions, which is due to the fact that combustion is initiated at multiple ignition sites, the temperature of the combustion process being relatively low as a result thereof. For HCCI combustion, gasoline presents great advantages over diesel fuel on account of its low autoignition quality and the lower boiling range of between approximately 30° C. and 190° C. The compression ratio may be raised to values similar to those in a diesel engine of about 15 to 17. Since the precise time of ignition can be fixed as desired just before top dead center only when the effective medium pressure is low, the effective medium pressure achievable in HCCI combustion is disadvantageously limited to the part load range as may be gathered from the publication entitled “An Experimental Study on Premixed-Charge Compression Ignition Gasoline Engine”, Taro Aoyama et al., SAE Paper No. 960081.
DE 199 27 479 A1 describes a method for operating an engine run on gasoline in which the internal combustion engine is operated in the homogeneous charge compression ignition mode when the effective medium pressure is below a predetermined limit and in the spark ignition mode when said effective medium pressure is above said limit. In this way, all the advantages of HCCI combustion can be made use of without the disadvantages thereof.
EP 1 085 192 A2 discloses an internal combustion engine which is operated in the homogeneous charge compression ignition mode in the medium part load range and which is operated in the homogeneous charge spark ignition mode in the upper part load range and at full load, and in the lower part load range as well. In the transition range from the spark ignition mode to the compression ignition mode, the quantity of recirculated exhaust is increased in order to ensure safe autoignition. Conversely, on transitioning from the compression ignition mode to the spark ignition mode of operation, the quantity of recirculated exhaust is reduced in time to prevent knocking.
U.S. Pat. No. 6,230,683 B1 describes a diesel cycle internal combustion engine operating in a homogeneous charge mode in which the combustion process is controlled. Combustion is controlled by controlling the temperature, pressure, autoignition properties and composition of the mixture. During the intake stroke, a gaseous first fuel and a second fuel are supplied to the combustion chamber and, during an early portion of the compression stroke which is to occur between 180 and 60 degrees before top dead center, a pilot fuel is supplied to the combustion chamber. The timing of ignition of said first and second fuel is controlled by the quantity of pilot fuel.
WO 99/40296 A1 discloses a method of operating a four-cycle internal combustion engine run on a homogeneous, lean basic mixture of air and fuel and operated in the compression ignition mode in which the fuel-air ratio generated within the combustion chamber is controlled by a controllable intake element. The respective combustion event is measured and the timing of closing of the intake element is set for the next cycle in function of a signal obtained from said measurement. The engine load is controlled by the timing of closing of the exhaust element and by the residual exhaust gas within the combustion chamber, as well as by the mixture of fuel and unburned gas supplied. Combustion situation and history is sensed in real time by engine parameters such as the structure-borne noise at the internal combustion engine, the ion current in the combustion chamber and the irregularity of rotation of the crankshaft.
Generally, combustion control and torque control are performed together so that compromises must be made. Accordingly, the potential for improvements in consumption and emissions cannot be fully utilized.
Traditional engine controllers for Otto cycle engines operated with a homogeneous charge mode (both Otto cycle internal combustion engines in which injection occurs via intake manifolds and direct-injection Otto cycle internal combustion engines operated in the homogenous charge mode) substantially have the function of providing the three basic parameters, charge, injection and ignition for the respective one of the engine operating points. 8, 16 or 32-bit microcontrollers are generally utilized because they are capable of performing this function. With the help of sensor signals, they detect the actual operating condition of the engine as well as the environmental conditions and determine the optimum parameters mentioned herein above with the assistance of suited characteristic diagrams and curves. In most cases, the characteristic diagrams are addressed through the two basic operating parameters engine speed and engine load. The engine speed is determined by evaluating the signal of a speed sensor that scans a trigger disc mounted on the crankshaft. To ascertain the engine load, three different methods are generally used in principle. The one possibility consists in evaluating the signal of an air mass flow sensor positioned between air filter and throttle that senses the charge of fresh air in the engine as a result thereof. The second method consists in sensing the negative suction pipe pressure prevailing in the collecting suction pipe of the internal combustion engine, the suction pipe pressure being also indicative of the charge of the internal combustion engine. Another method provides the possibility to determine mass flow through the position of the throttle.
These methods serve to sense the load of the internal combustion engine but do not permit to take the pressure and temperature conditions in the cylinder into consideration. However, precisely these two parameters are very important when information about the combustion event or the combustion process is to be given.
Once the charge has been determined, the required mass of fuel to be injected can be determined therefrom, which permits to operate the engine at the desired air-fuel ratio &lgr;. Deviations from this desired value &lgr; are sensed by a &lgr;-sensor located in the exhaust manifold in front of the catalyst and are supplied to a control loop that corrects the deviations from the command value &lgr;.
Furthermore, actual engine controllers are connected to a pedal valuator that detects the wish of the driver and to an electronic throttle that finally opens to let pass the air mass flow. The attractive power of the pedal valuator onto the throttle is uncoupled, i.e., there is no direct conversion of the pedal value position into a command position of the throttle, the throttle is rather driven by way of a coordination of the gathered torque requirements placed on the internal combustion engine. In this connection, an empiric torque model is mostly used, said model including the inner torque as a primary value. When the timing of ignition is optimally set, the quantity of fresh intake air in an Otto cycle engine operated in the homogeneous charge mode is directly indicative of the torque delivered.
SUMMARY OF THE INVENTION
It is the object of the invention to develop a method of operating a four-stroke internal combustion engine of the type mentioned herein above in order to achieve best possible combustion with optimu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of operating an internal combustion engine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of operating an internal combustion engine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of operating an internal combustion engine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3343138

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.