Method of operating a diaphragm-type carburetor

Gas and liquid contact apparatus – Fluid distribution – Pumping

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C261S040000, C261S116000, C261SDIG003, C261SDIG006

Reexamination Certificate

active

06234457

ABSTRACT:

FIELD OF THE INVENTION
The present invention concerns a diaphragm type carburetor which is used to supply fuel mainly to all-purpose two-cycle engines.
BACKGROUND OF THE INVENTION
In most all-purpose two-cycle engines used as sources of motive power in small vehicles and portable machinery for agriculture and forestry, etc., fuel is supplied by means of a diaphragm type carburetor equipped with a constant-fuel chamber. The constant-fuel chamber is generally separated from the atmosphere by a diaphragm which adjusts the fuel to a constant pressure.
A diaphragm type carburetor is also equipped with a diaphragm type fuel pump driven by pulse pressure generated in the crankcase of the engine. Fuel from the fuel tank is introduced into the constant-fuel chamber by this fuel pump, and is drawn into the air intake passage and supplied to the engine from this constant-fuel chamber. Such a carburetor is ordinarily equipped with a manual starting pump which feeds an extra amount of fuel out into the air intake passage or introduces a specified amount of fuel into the constant-fuel chamber prior to the starting of the engine. The operation of the manual starting pump improves the starting characteristics of the engine at low temperatures.
In diaphragm type carburetors, it has long been known to regulate the fuel flow rate by the installation of a main jet in the fuel passage leading from the constant-fuel chamber to the main nozzle, or by the promotion of fuel atomization and limiting of the fuel flow rate by the introduction of bleed air into the fuel in the fuel passage. An example of those techniques is disclosed in Japanese Patent Application Kokoku No. Sho 46-10565.
Prevention of the flow of air into the constant-fuel chamber from the main nozzle during engine deceleration by the installation of a check valve in the main nozzle or fuel passage has long been known in diaphragm type carburetors. An example of this technique can be found in U.S. Pat. No. 3,404,872 or Japanese Patent Application Kokai No. Sho 55-69748.
All-purpose two-cycle engines equipped with diaphragm type carburetors generally have a single cylinder, so that the air flowing through the air intake passage undergoes a pulse motion. It is known from experience that the supply of fuel from a main nozzle opening into the narrowest part of the venturi of the air intake passage is generally greater in the case of a single-cylinder engine in which the air flow is intermittent than in the case of a multi-cylinder engine in which the air flow is continuous. Accordingly, diaphragm type carburetors for use in all-purpose two-cycle engines are constructed so that the air flow velocity in the narrowest part of the venturi is lower than in a carburetor meant for use in multi-cylinder engines.
The main nozzles of diaphragm type carburetors proposed in the past have a nozzle opening at the tip end of the main nozzle. The nozzle configurations of current designs have a nozzle opening at a point which is in the same plane as or protruding slightly from the wall surface of the narrowest part of the venturi. As a result, the fuel which is sucked out by a low-velocity air flow, and thus by a low venturi negative pressure, tends to flow along the wall surfaces, so that sufficient atomization is difficult to achieve even if bleed air is introduced. This leads to uneven engine revolution and insufficient engine output. Especially in carburetors in which a check valve is installed in the main nozzle, poor atomization is achieved because this check valve hinders the atomization of the fuel, resulting in poor combustion when the fuel is first sucked out.
The present invention is intended to provide a diaphragm type carburetor which solves the aforementioned problem of difficult fuel atomization encountered in conventional diaphragm type carburetors, so that an appropriate amount of fuel can be sufficiently atomized and supplied to the engine at all times.
SUMMARY OF THE INVENTION
A first embodiment of the present invention comprises a main jet used for fuel regulation and a check valve used to prevent back flow installed in a fuel passage leading from a constant-fuel chamber to a main nozzle, wherein the main nozzle included nozzle openings formed in the circumferential surface of a tubular member. The tubular member of the device extends through the central axial line of a venturi in a direction which cuts across the narrowest part of the venturi.
Thus, when a cross-bar type main nozzle of the type used in the multiple venturis of carburetors used in multi-cylinder engines (as known from Japanese Patent Application Kokai No. Sho 58-20956, etc.) is applied to the single venturi of a diaphragm type carburetor, the fuel is sucked out into the air flowing through the venturi so that there is no formation of a wall surface flow and the fuel is more fully atomized. Furthermore, the check valve installed in the fuel passage closes during engine deceleration so that fuel is held on the main nozzle side; accordingly, an appropriate amount of fuel will always be supplied to the engine without delay at the time of the next acceleration.
In a second embodiment of the present invention, the device is configured so that a main jet used for fuel regulation and a check valve used to prevent back flow are installed in a fuel passage leading from a constant-fuel chamber to a main nozzle. The main nozzle has a construction in which nozzle openings are formed in the circumferential surface of a tubular member, wherein the tubular member is substantially perpendicular to the valve shaft of a throttle valve. The tubular member extends through the central axial line of a venturi in a direction which cuts obliquely across the venturi along the pivoting track of the outer circumferential edge of the throttle valve. The nozzle openings are preferably installed in positions on the upstream side of the pivoting track.
In this second embodiment, in addition to the functions obtained using the first means, the negative pressure acting on the nozzle openings is controlled in accordance with the degree of opening of the throttle valve. The response and stability of the fuel sucking action are thus improved and a more appropriate fuel supply during acceleration and transition from low-speed fuel to high-speed fuel is assured.


REFERENCES:
patent: Re. 32938 (1989-06-01), Haman et al.
patent: 1158435 (1915-11-01), Bourne
patent: 1186797 (1916-06-01), Kingston
patent: 1642332 (1927-09-01), Carlsson
patent: 2867395 (1959-01-01), Saint
patent: 3404872 (1968-10-01), Nutten
patent: 3544082 (1970-12-01), Fort et al.
patent: 3758082 (1973-09-01), Kertell
patent: 4080409 (1978-03-01), Graybill
patent: 4102952 (1978-07-01), Snipes
patent: 4235827 (1980-11-01), Gopel
patent: 4268462 (1981-05-01), Ota et al.
patent: 4411844 (1983-10-01), Morris et al.
patent: 6086054 (2000-07-01), Yanaka et al.
patent: 066060 (1922-12-01), None
patent: 57-79243 (1982-05-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of operating a diaphragm-type carburetor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of operating a diaphragm-type carburetor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of operating a diaphragm-type carburetor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2469117

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.