Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid
Reexamination Certificate
1998-11-09
2001-02-13
Myers, Carla J. (Department: 1655)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving nucleic acid
C435S091200, C435S287200, C435S287300, C435S307100, C206S001500, C220S200000, C220S315000
Reexamination Certificate
active
06187540
ABSTRACT:
SUMMARY OF THE INVENTION
The present invention relates to a method of uniquely identifying a newborn and mother pair at the birth of a child in a hospital-like setting and ensuring that the newborn/mother pairing has been correctly maintained at least until discharge of the mother and child pair. The invention also provides a unique sample collection means that prevents samples from being mislabeled or incorrectly associated with a non-family member and can be permanently stored for future identification purposes.
DESCRIPTION OF THE BACKGROUND
Identification of infants at birth is a critical issue for hospitals, birthing centers and other institutions where multiple births occur. With approximately 300,000 infants born worldwide each day, a large hospital may experience over one hundred new births each day. A large hospital may see as many as a hundred new infants each day. Correct identification of infants is essential to ensure that each mother travels home with her own child.
In the past infants have been identified by means of footprints. However, this is not a satisfactory method of identifying infants because there is no means of ensuring that a footprint is associated with a particular mother, other than placing a footprint in the mother's hospital records. Further, footprints of newborn infants are difficult to take and difficult to distinguish. Additionally, the footprints are useful for only a short period in identifying the infant and will not suffice as a permanent identification means.
Current identification technologies generally consist of attaching an identification device to the newborn with a matching device for the mother. Before an infant can be moved from the hospital, the devices are compared to ensure that only the mother of that infant can leave with the child. Such devices include the typical wrist bands or bracelets, which today are often electronically readable (see e.g., WO98/18111). In another variation, the mother wears a wrist band, but the infant has an umbilical clamp (see e.g., U.S. Pat. No. 5,484,060 and U.S. Pat. No. 5,608,382) and in yet another variation, the infant is actually marked with a semi-permanent ink (see e.g., GB2,273,266 and U.S. Pat. No. 5,484,060).
However, any device or external labeling means can be intentionally defeated, by changing the markings or electronic signature on the existing device, or by completely replacing the device with an appropriately marked device. Recently, it was discovered in the United States that two infants were switched at birth. Evidence strongly suggested that the switching was not accidental. Tragically, the switch was not discovered for several years and might not ever have been discovered absent a paternity contest involving one of the children. In its aftermath, the event leaves considerable consternation about how to cope with child custody issues, visitation rights, hospital liability, and an ongoing criminal investigation.
Public concern over this issue is significant. A recent market survey created by an academic institution was conducted on 200 expectant mothers to assess their interest in a service that would assure them that their infants had not been switched at birth. An overwhelming 85% of the respondents wanted such a service and would be willing to pay for it. Public concern has also reached the U.S. Congress. Proposed legislation entitled “The Infant Protection and Baby Switching Prevention Act of 1998” (H.R. 4680) has been introduced into the House of Representatives in an effort to require hospitals to address this problem. Unfortunately, no specific solution was recommended in the Act.
Therefore, although rare, infant switches do occur and with potentially devastating consequences. A failsafe method of uniquely identifying which infant belongs to which mother is urgently required. Such system should be tamper-proof, simple, easy, and cost effective. Furthermore, the ideal system would create a permanent record allowing for future identification of the child in the event of abduction or accident.
Genotyping has been used to identify paternity, and occasionally maternity, where contested, usually in a child support context. Genotyping has also been suggested and used after the fact where it is suspected that infants have been switched. See e.g., de Pancorbo M. M., et al., Newborn Identification: A Protocol Using Microsatellite DNA as an alternative to Footprinting, CLIN. CHIM. ACTA (1997) 263(1): 3342. However, to date no one has applied genotyping technology to systematically identify infants at birth and again at discharge to ensure that no switching has occurred and that the infant has been correctly paired with its birth mother. Furthermore, no one has provided a permanent storage mechanism for future identification purposes.
Such massive genotyping efforts have never been applied in a hospital setting and present significant logistical concerns. It would not suffice, for example, for a sample to be merely collected and later typed within the hospital environment because such a process is subject to the same labeling errors that currently exist with neonatal samples such as cord blood samples. See e.g., Heckman, Maria, et al., Quality Improvement Principles in Practice: The Reduction of Umbilical Cord-Blood Errors in the Labor and Delivery Suite; Interdisciplinary Performance Improvement, J. NURSING CARE QUALITY (1998) 3(12): 47 (noting that in the eight months prior to their process improvement efforts there were 18 mislabeled specimens out of 3,504 births—an error rate of 0.5%).
SUMMARY OF THE INVENTION
The only failsafe method of identifying correct infant/mother pairing is by genetic typing of the infant and/or the putative mother. However, prior to the present invention, no one has routinely employed genotyping for this purpose or devised a simple, inexpensive system that can be routinely performed at birth and/or at discharge. The method of the present invention has the benefit that even if the hospital records are incorrect or have been intentionally altered, such an event will be indicated and an infant/mother pairing can still be correctly determined.
In one embodiment, the invention is a method for ensuring that a newborn/mother pairing is correct at discharge. The method comprises obtaining a first sample of newborn cells at the birth of a newborn. The sample is stored on a tamper-proof collection device, forwarding to a genotyping location, and examined to ensure that tampering has not occurred. The first sample is genotyped to provide a first newborn fingerprint. Likewise, a second sample of newborn cells is obtained and treated as the first sample. The first and second newborn fingerprints are compared, and substantial identity of the two fingerprints indicates that said newborn has not been switched prior to discharge.
The tamper-proof collection device may also be stored in a dry, dark location for possible future use. Sample of newborn cells may be obtained from a buccal swab, blood, cord blood, amniotic fluid, embryonic tissue, hair, or fingernail clipping. Cells may be collected at birth or prior thereto.
In an additional embodiment, at least one sample of maternal cells from a mother is collected as above. It is genotyped to provide a maternal fingerprint, and comparison of the maternal fingerprint and said first or second newborn fingerprints indicates maternity where there is evidence for transmittance of an allele from the mother to the infant at all marker loci studied (defined herein as “about 50% identity”). This result confirms that the newborn/mother pairing is correct.
In all cases, a report summarizing the results of the genotyping comparison can be generated and forwarded to the parents or hospital.
In another embodiment, the method comprises obtaining discharge-samples of newborn cells from a newborn and maternal cells from a mother prior to discharge, genotyping said discharge-samples to provide a discharge newborn fingerprint and a discharge maternal fingerprint and comparing the discharge newborn and maternal fingerprints. As above,
Caskey Caroline
Staub Rick
Identigene, Inc.
Jenkens & Gilchrist
Myers Carla J.
LandOfFree
Method of newborn identification and tracking does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of newborn identification and tracking, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of newborn identification and tracking will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2562920