Method of melting material between telescopingly engaged...

Metal fusion bonding – Process – Preplacing solid filler

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C228S126000, C228S245000

Reexamination Certificate

active

06805281

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to telescopingly engaged elements, such as cylindrical pipes and, more particularly, to a method of melting a material to connect and/or seal between the elements.
2. Background Art
There are myriad different environments in which telescopingly engaged elements are required to be connected and/or sealed at a joint by utilizing metal and/or other material which is melted to flow between the joint and then solidified. One such environment is in the plumbing industry. Valves, pipe fittings, and lengths of pipe are designed with joint portions to slide telescopingly, one inside the other. Conventionally, the joint portions are prepared by using a cleaner, a brush, an abrasive sheet, or the like, to clean the facing surfaces at the joint and to potentially roughen the surfaces so that the solder, or the like, will more tenaciously adhere thereto. On completion of this process, the joint portions are directed, one inside the other, to a desired, final relative position. Flux material may be applied at the joint. The joint portions are then heated as with a torch to a temperature above the melting point of the solder, which may be a pure solder material or have an additive to enhance adherence to the joint portions. Once the desired temperature is realized, the solder is directed into the space between the overlapping joint portions by presentation of the solder to the edge of the female element. The solder is drawn into the joint as this occurs.
Typically, solder is provided for this purpose in a wire form, with the wire wrapped around a spool. The user typically unwraps a length of the solder which can be relatively easily shaped and which will maintain the shape selected. In an environment wherein the space around the joint is unobstructed, it is common to apply the solder in a continuous motion through 360° around the joint. This is commonly done by paying out several inches of the solder and placing it in a straight form, holding the spool, and through the wrist moving the solder in a wrapping motion around the joint region.
One problem encountered in this process is that it is often difficult to gauge whether the optimum amount of solder has been deposited around the entire joint. Failure to flow the solder completely around the joint may result in a leak, which may require that the joint be broken, re-cleaned, and re-processed as described above.
Commonly, to avoid the situation where the solder has not fully flowed around the joint, a person may apply an excess of solder. Excess solder flows around the joint and becomes wasted. Also, the excess solder that flows away from the joint may accumulate and become unsightly and may potentially damage adjacent walls, floors, or objects thereon.
One manner of removing excess solder is to wipe the excess solder, as with a cloth, with the solder in a molten state. This introduces an additional step and also places the individual performing the step at risk to becoming exposed to the hot solder.
Another problem that is encountered occurs when there is an obstruction in the vicinity of the joint which prohibits viewing of the entire joint and which obstructs the application of the solder around a part of the joint. It is common in some situations for a user to bend the solder into a U shape at its end and to blindly attempt to deposit the solder in a region that cannot be viewed. There is again, in this situation, a risk that the solder will not be flowed fully around the joint, which could lead to leakage or a weak joint. Also, the user blindly applying the solder will have a tendency to apply an excess which potentially results in waste, unsightly drips, and spattering of the molten solder in the vicinity of the joint, as on floors, walls, etc.
SUMMARY OF THE INVENTION
In one form, the invention is directed to a method of forming a meltable material at a joint between telescopingly engaged male and female elements, with the female element having a joint surface that surrounds a joint surface of the male element. The method includes the steps of: placing a ring of the meltable material around one of the male and female elements at a first location spaced from the joint; heating the male and female elements at the joint to a temperature at which the meltable material melts; sliding the ring of meltable material from the first location to a second location; with the ring of meltable material at the second location and the male and female elements of the joint at a temperature at which the meltable material melts, causing the meltable material to flow between the male and female joint surfaces; and cooling the male and female elements at the joint to solidify the meltable material between the male and female joint surfaces.
In one form, the male and female elements are heated at the joint to a temperature at which the meltable material melts before the ring of meltable material is moved from the first location to the second location.
The step of placing a ring of the meltable material around one of the male and female elements may involve bending a piece of the meltable material around the one of the male and female elements. Alternatively, the one of the male and female elements can be directed through a preformed ring of the meltable material.
In one form, the ring of meltable material extends continuously through 360°. The ring of meltable material preferably extends through at least 330°.
In one form, the ring of meltable material is a formed piece of wire with spaced ends.
In one environment, the meltable material is solder and the male and female elements each comprise one of a piece of pipe and a pipe fitting.
The invention is also directed to a method of forming a meltable material at a joint between telescopingly engaged male and female elements including the steps of: placing a ring of the meltable material around the male element at the joint but not within the female element; heating the male and female elements at the joint to a temperature at which the meltable material melts; causing the melted meltable material to flow between the male and female elements; and cooling the male and female elements at the joint to solidify the meltable material between the male and female joint surfaces.
The invention is further directed to a method of making a connection between male and female elements, with the female element having an internal joint surface and the male element having an external joint surface. The method includes the steps of: providing a ring of meltable material; directing one of the male and female elements through the ring of meltable material; after directing the one of the male and female elements through the ring of meltable material, directing the male element into the female element so that the female joint surface surrounds the male joint surface; heating the male and female joint surfaces to a temperature at which the meltable material melts; causing the melted meltable material to flow between the male and female joint surfaces; and cooling the male and female joint surfaces to solidify the meltable material between the male and female joint surfaces.
The method may further include the steps of placing the ring of meltable material at a first location spaced from the female element as the male and female joint surfaces are heated, and after heating the male and female joint surfaces to a temperature at which the meltable material melts, sliding the ring of meltable material from the first location to a second location at which melted meltable material can flow between the male and female joint surfaces.


REFERENCES:
patent: 3584372 (1971-06-01), Larson
patent: 3639721 (1972-02-01), Hubbel
patent: 3745644 (1973-07-01), Moyer et al.
patent: 3784239 (1974-01-01), Carter et al.
patent: RE28457 (1975-07-01), Dawson
patent: 3968982 (1976-07-01), Belicic
patent: 3995964 (1976-12-01), De Groef
patent: 3998478 (1976-12-01), Zopfi
patent: 4066861 (1978-01-01), Broodman
patent: 4092193 (1978-05-01), Brooks
patent: 4174563 (1979-11-01), Simpson

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of melting material between telescopingly engaged... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of melting material between telescopingly engaged..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of melting material between telescopingly engaged... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3295146

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.