Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of...
Reexamination Certificate
2000-06-09
2001-10-16
Carlson, Karen Cochrane (Department: 1653)
Chemistry: molecular biology and microbiology
Animal cell, per se ; composition thereof; process of...
C435S320100, C435S006120, C435S069100, C536S023100, C530S350000
Reexamination Certificate
active
06303373
ABSTRACT:
BACKGROUND OF THE INVENTION
Insulin resistance is important in the development of adult-onset diabetes mellitus and several lines of evidence indicate that an initial defect in adult onset diabetes is reduced insulin-stimulated recruitment of GLUT4 glucose transporter from a sequestered intracellular site to the cell surface in muscle and fat cells. An increase in cell surface (plasma membrane) GLUT4 amount allows for an increased rate of facilitated diffusion of glucose into cells. Presently available methods of determining or measuring GLUT4 translocation, such as methods involving assessment of
3
H 2-deoxyglucose uptake, cell fractionation, counting radioactivity that binds to adherent cells on a multiwell plate, plasma membrane sheet assays and immunofluorescence microscopy are laborious and/or only semiquantitative. It would be of considerable interest to be able to measure GLUT4 glucose transporter protein translocation easily and quantitatively.
SUMMARY OF THE INVENTION
The present invention relates to a method of assessing translocation of a protein of interest in cells which occurs when the cells are exposed to a condition or treated in such a manner that a protein that is sequestered at an intracellular location moves (is translocated) to the cell surface (plasma membrane) or, alternatively, a protein at the cell surface moves (is translocated) to an intracellular location. It also relates to a method of determining whether a condition or set of conditions to which cells are exposed or contacted alters (induces, enhances or inhibits) translocation of a protein of interest known to undergo translocation under certain conditions. The protein whose movement is being assessed is referred to as a protein of interest. The method is carried out using a modified form of the protein of interest, referred to as a modified protein of interest or a reporter protein. The reporter protein is the protein of interest modified in such a manner that it comprises one or more tags that allow quantification of relative amounts of the protein that are at the cell surface and of the total amounts of the protein in the cells. For example, it can comprise one or more intracellular tag(s) and one or more extracellular tag(s). The extracellular tag(s) and the intracellular tag(s) are distinct tags; that is, they are different tags that can be detected separately/distinguished from one another (e.g., two fluorescent tags detectable at different wavelengths). The reporter protein moves within the cells in essentially the same way as the protein of interest. The intracellular tag e.g., an intracellular fluorescent tag corresponds to the total protein of interest in the cell and does not change in quantity depending on the location of the reporter protein in the cell. The intracellular tag is fused in-frame in the DNA or RNA sequence that encodes the protein. The extracellular tag (e.g., an epitope(s) or radioactive label) is detectable only if the tag is extracellular, since the detector used is one that is unable to (does not) cross the cell membrane; the detector can be, for example, an antibody or other compound that recognizes (binds) the extracellular tag. Thus, the extent to which the extracellular tag is detectable (e.g., the intensity of fluorescence due to the epitope tag(s)) is indicative of the extent to which the protein of interest is present at the cell membrane. The intracellular tag can be any fluorescent tag, such as Green Fluorescent Protein (GFP), Blue Fluorescent Protein (BFP), Red Fluorescent Protein (RFP) or a sequence of amino acids designed to bind a molecule that has fluorescent, radioactive, or other detectable characteristics. The extracellular tag is generally an epitope tag or tags that is recognized by an antibody. The antibody can be monoclonal or polyclonal and can itself be detectably labeled (e.g., fluorescently labeled) or can be recognized (bound) by a detectably labeled antibody (a labeled secondary antibody). For example, the epitope tag(s) can be recognized by a primary or secondary antibody labeled with phycoerythrin (PE). Any pair of fluorescent labels can be used, as long as they are detectable at distinct wavelengths (different wavelengths). If there are two or more intracellular tags and/or two or more extracellular tags, it is only necessary that there are distinct detectable differences (such as distinct/different wavelengths) that correspond to surface protein of interest and total protein of interest. Alternatively radioactive, colorimetric, luminescent or other detection strategies may be used. The only requirements are that 1) the two tags can be detected individually and each can be quantified and 2) the addition of tag(s) does not substantially alter trafficking of the protein of interest with cells.
The extent of translocation of the protein of interest is assessed by culturing or treating cells that contain the reporter protein (referred to as test cells) under a condition(s) to be assessed for their effects on translocation of the protein of interest to the cell membrane; determining the intensity of the intracellular tag (e.g., intensity of fluorescence of an intracellular tag, such as GFP, RFP or BFP) and the intensity of the extracellular tag (e.g., by measuring the intensity of fluorescence of epitope tag(s) by means of fluorescently labeled antibodies); calculating the proportion or fraction of and determining a value corresponding to the total cellular modified protein of interest that is present at the cell surface and comparing the resulting proportion with the corresponding proportion calculated for control cells. Control cells are the same type of cells as the test cells and are cultured or handled in the same manner as are the test cells, except that control cells are not cultured or treated under the conditions being assessed for their effects on translocation to the cell membrane. For example, if test cells are cultured in the presence of a hormone or growth factor, control cells are cultured under the same conditions as the test cells, except in the absence of the hormone or growth factor. Two measurements (such as fluorescence at two different wavelengths), F
1
and F
2
, correspond, respectively, to cell surface protein of interest and total protein of interest in the cells. If the proportion of protein of interest at the cell membrane to total protein of interest is greater for test cells than for control cells, translocation has occurred in the test cells and the condition under which the test cells were cultured or treated (e.g., in the presence of a hormone or growth factor) is a condition that causes or enhances translocation from an intracellular location to the cell membrane. Translocation from the cell membrane to an intracellular location for a protein of interest can also be assessed using the modified protein of interest and the method of the present invention.
In a particular embodiment, the protein whose translocation is assessed is GLUT4 and the modified protein of interest is modified GLUT4, also referred to as GLUT4 reporter, which includes an intracellular tag and at least one, and preferably multiple, extracellular tag(s). For example, the intracellular tag is GFP, RFP or BFP and the extracellular tag(s) are epitope tag(s), which can be detected using a fluorescent or a radioactive label. The ratio of protein of interest at the cell membrane (F
1
) to total protein of interest in test cells (F
2
) is compared to the ratio of protein of interest at the cell membrane (F
1
) to total protein of interest in the control cells, (F
2
). If the proportion is greater in the test cells is greater than the control cells, the condition(s) is an enhancer of/causes translocation to the cell membrane.
As described below with specific reference to GLUT4, preferably three sets of values, each consisting of fluorescence intensities at two distinct wavelengths, are determined in the method of assessing change in the proportion of the protein of interest that is present at the plasma membrane (and, thus, the extent to which tr
Bogan Jonathan S.
Lodish Harvey F.
Carlson Karen Cochrane
Hamilton Brook Smith & Reynolds P.C.
Kam Chih-Min
Whitehead Institute for Biomedical Research
LandOfFree
Method of measuring plasma membrane targeting of GLUT4 does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of measuring plasma membrane targeting of GLUT4, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of measuring plasma membrane targeting of GLUT4 will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2575448