Method of matching optical elements and fiber ferrules

Optical waveguides – With disengagable mechanical connector – Optical fiber/optical fiber cable termination structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S034000, C385S047000, C385S060000, C385S052000

Reexamination Certificate

active

06582135

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to optical telecommunication systems and, in particular, to an apparatus and method of manufacturing optical devices employed in such telecommunication systems.
2. Technical Background
Up to three port filtering and isolating packages are widely used in local and long distance optical telecommunication networks. These networks comprise various spectral shaping and isolating optical assemblies as parts of dense wavelength division multiplexing (DWDM) systems. The necessity to design reliable optical devices for such systems, which are subject to various thermal and mechanical loads during their 20 to 25 year lifetime, is of significant importance. A typical example of such optical devices is an optical filter assembly. A typical optical filter assembly comprises two (input and reflective) optical glass fibers inserted into a dual-capillary ferrule to produce a fiber-ferrule sub-assembly, a GRIN lens, and a filter. The optical components of the filter assembly are embedded into an insulating glass tube, which in turn is mechanically protected by a metal housing. In a typical 3-port package the above dual-fiber filtering assembly is combined with an output collimating assembly leading to a single optical fiber. These filter assemblies typically exhibit insertion losses higher than desired, resulting in degraded overall performance of the communications system or module. The problem is particularly acute during exposure to ambient operating conditions where temperature is variable.
Typical input glass ferrules employ one of two designs. A single capillary suitable for containing multiple glass fibers or separate circular capillaries for each fiber have been used, each with relatively short (0.7-1.2 mm) fiber-receiving conical lead-in ends. With such input ferrules, the optical fiber is subjected to an S-bending over the short conical end portion which typically exceeds 50% of the fiber diameter (for a fiber having a 125 &mgr;m diameter) on a span of about 6 to 10 diameters in length. This excessive micro bending increases the insertion losses. Although the multi-capillary design reduces the lateral deflection of fiber interconnects compared to the elliptical single-capillary design, the short length of the cone end of such ferrules cannot reduce the micro bending of the fiber and its inherent insertion loss. Fiber-ferrule subassemblies employing such ferrules are manufactured by inserting the optical fibers stripped of their polymer coating into the respective ferrule capillaries; epoxy bonding the fibers into the ferrule capillaries, including the conical end portions; grinding and polishing an angled facet on the fiber-ferrule; and depositing on the polished surface an anti-reflection (AR) coating. Once finished, the fiber-ferrule is aligned and assembled with the collimating GRIN lens and then embedded into the insulating glass tube, which, in turn, is protected by a metal housing.
There are two different technical solutions used in the design of bonds securing the components of an optical assembly. A low compliance bond between thermally well matched glass fibers and the glass ferrule is an approach commonly used by some manufacturers. The adhesives used are heat-curable epoxies with high Young's modulus (E>100,000 psi) and moderate to high thermal expansion coefficients ((&agr;=40-60 10
−6
° C.
−1
). A typical example would be 353 ND EPO-TEK epoxy adhesive. In addition, the bond thickness used is very small.
Silicon adhesives are used to bond thermally mismatched glass tubes with metal housings and glass optical elements with metal holders. In these joints, a high compliance design is used. The silicones, which can be cured between 20-150° C. in the presence of moisture, are typically characterized by an extremely low Young's modulus (E<500 psi) and high thermal expansion (&agr;=180-250 10
−6
° C.
−1
). A typical example would be DC 577 silicone, which can be used to bond, for example, a metal optical filter holder to a GRIN lens.
Adhesive bonding with subsequent soldering or welding is used to encapsulate a filtering assembly into a three-port package of a DWDM module. A precise alignment achieved during initial assembly of a filter prior to final packaging can be easily decreased due to the adhesive curing process and the high temperature thermal cycles associated with soldering or welding during the final packaging of the components. Such manufacturing processes and resulting components have several problems resulting from stresses on the optical components due to the thermal contraction mismatch between the glass and metal materials, polymerization shrinkage in adhesive bonds, and structural constraints induced by bonding and final soldering during encapsulation. These stresses lead to displacements of optical components during bonding and soldering, resulting in 0.3 to 1 dB or greater increases in the insertion loss.
Such a filter package enclosure, which is typically formed of six to eight concentric protective units, has micron transverse tolerances. Maintaining these tolerances requires precision machining, time-consuming alignment, and soldering with frequent rework. As a result of these limitations, the optical performance specifications are lowered and cost is increased. As an example, soldering typically includes several re-flow cycles. This induces local thermal stresses in the nearby adhesive bonds and leads to the degradation of the polymer adhesive, resulting in repositioning of optical components and a shift in the filter spectral performance. With such design, soldering may also result in the contamination of optical components through direct contact with molten solder and/or flux.
However, for many applications, it is desirable to obtain a high accuracy thermally compensated optical multiple-port package that can be relatively inexpensive, reliable, and have a low insertion loss. Additionally, a package design should be adequate not only to mechanically protect the fragile optical components but also to compensate for and minimize the thermally induced shift in spectral performance. Further, it is desirable to obtain a multiple-port package, such as six port packages, with the same qualities since they further reduce costs, reduce size, and also result in reduced insertion loss. Thus, there exists a need for such optical packages and a process for manufacturing such optical packages, which is miniaturized, has a low insertion loss, is inexpensive to manufacture, and which results in a device having reliable, long-term operation.
SUMMARY OF THE INVENTION
The present invention provides an improved optical assembly (e.g., optical filter assembly) with a low insertion loss (IL) and provides an assembly of the optical components, such as input ferrules, collimating lenses, and filters, utilizing bonding adhesives in a manner which allows the alignment of the individual components relative to one another with a precision and a manufacturability that makes it possible to produce commercial devices having five, six or more ports. This had heretofore not been achieved. In one aspect, the invention includes an improved input ferrule and filter holder which permits active alignment and bonding through the utilization of UV and thermally curable adhesives and improved thermal curing to greatly reduce relevant internal stresses in the subassembly so formed. For assemblies having multiple pairs of fibers (e.g., five or more port devices) the invention also provides improved fiber ferrule designs, alignment methods, and methods to permit the manufacture of devices that have low IL, operate over a wide temperature range, are reliable, and cost effective.
In one aspect of the invention, improvements to fiber ferrules are provided including capillary designs and tolerances. The invention provides designs for capillaries which resist movement of the optical fibers during adhesive curing, soldering, welding, and environmental thermal chang

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of matching optical elements and fiber ferrules does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of matching optical elements and fiber ferrules, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of matching optical elements and fiber ferrules will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3153527

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.