Metal working – Method of mechanical manufacture – Electrical device making
Reexamination Certificate
2000-03-31
2003-02-04
Cao, Allen (Department: 2754)
Metal working
Method of mechanical manufacture
Electrical device making
C360S234300
Reexamination Certificate
active
06513229
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method of manufacturing sliders, a method of manufacturing slider materials, and slider materials that are used for manufacturing sliders for thin-film magnetic heads, for example.
2. Description of the Related Art
A flying-type thin-film magnetic head used for a magnetic disk device and so on is generally made up of a thin-film magnetic head slider (that may be simply called a slider) having a thin-film magnetic head element provided at the trailing edge of the slider. The slider generally comprises a rail whose surface functions as a medium facing surface (an air bearing surface) and a tapered section or a step near the end on the air inflow side. The rail flies slightly above the surface of a recording medium such as a magnetic disk by means of air flow from the tapered section or step.
A thin-film magnetic head element generally used is a composite-type element made up of layers of an induction magnetic transducer for writing and a magnetoresistive (MR) element for reading.
In general, such thin-film magnetic head sliders are formed through cutting a wafer in one direction in which sections to be sliders (called slider sections in the following description) each including a thin-film magnetic head element are arranged in a plurality of rows. A block called a bar in which the slider sections are arranged in a row is thereby formed. Rails are then formed in the bar and the bar is cut into the sliders.
The manufacturing process of the sliders includes a step of processing a surface to be the medium facing surface (hereinafter called the medium facing surface for convenience) of the bar, that is, grinding or lapping the medium facing surface and a step of cutting the wafer into the bars. The order of the step of processing the medium facing surface and the step of cutting the wafer into the bars depends on methods of processing the medium facing surface and cutting the wafer, as described later.
In the step of processing the medium facing surface, it is required that the MR height and the throat height of each thin-film magnetic head element formed in the bar fall within a tolerance range and that processing accuracy of the surface processed fall within a tolerance range. The MR height is the length (height) between an end of the MR element close to the medium facing surface and the other end. The throat height is the length (height) of the magnetic pole of an induction magnetic transducer between an end close to the medium facing surface and the other end.
In prior art the following method is generally taken to process the medium facing surfaces of bars and cutting a wafer into the bars. That is, a bar including a row of slider sections is cut from a wafer. The bar is fixed to a specific jig by bonding the surface of the bar opposite to the medium facing surface to the jig. The medium facing surface of the bar thus fixed to the jig is then processed. This method is called a first method in the following description. The first method is disclosed in, for example, Published Unexamined Japanese Patent Application Hei 10-228617 (1998), Published Unexamined Japanese Patent Application Hei 8-315341 (1996), and Published Unexamined Japanese Patent Application Hei 9-274714 (1997).
In prior art, second to sixth methods described below have been proposed, in addition to the above-described first method, for processing the medium facing surfaces of bars and cutting a wafer into the bars.
The second method is, as shown in
FIG. 7
of U.S. Pat. No. 5,406,694, for example, a specific length of block including rows of slider sections is cut from a wafer. The block is fixed to a specific jig by bonding the surface of the block opposite to the medium facing surface to the jig. The medium facing surface of the block thus fixed to the jig is then processed. The block is then cut into bars whose medium facing surfaces have been processed.
The third method is, as shown in
FIG. 3
of Published Unexamined Japanese Patent Application Hei 4-289511 (1992), for example, a wafer is fixed to a specific jig and the medium facing surface of the wafer fixed to the jig is processed. The wafer is then cut into bars whose medium facing surfaces have been processed.
The fourth method is, as shown in
FIG. 7
of Published Unexamined Japanese Patent Application Hei 4-289511, for example, a wafer or a block having a specific length and including rows of slider sections cut from a wafer is utilized. A reference surface opposite to the medium facing surface of the wafer or block is processed. The wafer or block is then fixed to a specific jig by bonding the reference surface to the jig. The wafer or block is cut at a position to be the medium facing surface. A bar is thus separated while fixed to the jig and the medium facing surface of the bar is processed.
The fifth method is, as shown in FIG.
8
and
FIG. 9
of Published Unexamined Japanese Patent Application Laid-open Hei 4-289511, for example, a wafer utilized has slider sections formed such that medium facing surfaces of adjacent rows face each other or surfaces opposite to the medium facing surfaces of adjacent rows face each other. The wafer is cut at a position where the surfaces opposite to the medium facing surfaces face each other to obtain a block including two rows of slider sections. A specific jig is fixed to each end face of the block through the use of an adhesive. The block is then cut at a position where the medium facing surfaces face each other to separate the block into two bars each fixed to the jig. The medium facing surface of each bar is then processed.
The sixth method is, as shown in FIG.
10
and
FIG. 11
of Published Unexamined Japanese Patent Application Hei 4-289511, for example, a wafer utilized has slider sections formed such that medium facing surfaces of adjacent rows face each other or surfaces opposite to the medium facing surfaces of adjacent rows face each other. The wafer is cut at a position where the medium facing surfaces face each other to obtain a block including two rows of slider sections. A specific jig is fixed to one medium facing surface of the block through the use of an adhesive. The other medium facing surface of the block is then processed. A specific jig is fixed to the other medium facing surface thus processed through the use of an adhesive. The jig is detached from the one medium facing surface and this medium facing surface is processed. The block is cut at a position where the surfaces opposite to the medium facing surfaces face each other to separate the block into two bars.
Of the foregoing methods, in the first method the bar including a row of slider sections is cut from the wafer. The bar is fixed to the jig and the medium facing surface of the separated bar is then processed. Consequently, the bar is often affected by the state of the interface between the bar and the jig or by warpage caused by bonding and likely to be deformed and to form a curvature and the like. As a result, it is likely that processing accuracy of the surface of the bar processed is reduced and deformation occurs, such as curvatures of the layers (pattern) making up the thin-film magnetic head elements formed in the bar. In addition, it is difficult to precisely control the resistance of the MR element, the MR height and the throat height. It is therefore difficult to precisely fabricate thin-film magnetic head sliders with excellent properties.
In the fifth and sixth methods, the block including two rows of slider sections is cut from the wafer and the block is fixed to the jig. In this case, too, problems similar to those of the first method described above may result since the block is thin and easy to deform. Furthermore, in the fifth and sixth methods, in the block including two rows of slider sections, the thin-film magnetic head elements in one of the rows are opposite in direction to the head elements in the other row. As a result, the number of steps required for processing the medium facing surface and separating the bar incr
Itoh Hiroyuki
Koyama Akinori
Sasaki Yoshitaka
Cao Allen
Oliff & Berridg,e PLC
TDK Corporation
LandOfFree
Method of manufacturing slider materials, method of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of manufacturing slider materials, method of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of manufacturing slider materials, method of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3182315