Method of manufacturing semiconductor devices

Fishing – trapping – and vermin destroying

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

437 47, 437241, 437918, 148DIG136, H01L 2170

Patent

active

053568257

DESCRIPTION:

BRIEF SUMMARY
TECHNICAL FIELD

The present invention relates to a method of manufacturing semiconductor devices and particularly to a method of manufacturing resistors using a polycrystalline semiconductor layer.


BACKGROUND ART

It has been mainly employed, as a resistor for a semiconductor device, a diffusion resistor which uses a diffusion layer formed in a semiconductor substrate as a resistor The diffusion resistor is constituted in such a manner that boron is doped to a surface portion of, for example, an n-type epitaxial layer to form a p+ diffusion region, then electrodes (e.g., Al electrodes and so on) are formed at opposite ends of the diffusion region.
In recent years, a polycrystalline silicon resistor which uses a polycrystalline silicon film as a resistor has been employed. The polycrystalline silicon resistor is constituted in a manner as shown in FIG. 6 that a polycrystalline silicon film 3 including impurities serving as a resistor is formed on a field insulating layer (SiO.sub.2 layer) 2 formed on a major surface of a silicon substrate 1, thereafter an SiO.sub.2 layer 4 is deposited on the entire surface of the polycrystalline silicon film 3 by the chemical vapor deposition (CVD) process, then a pair of Al electrodes (interconnections) 6 are formed on opposite ends of the polycrystalline silicon film 3 through contact holes. Thus constructed polycrystalline silicon resistor 7 has the following features when compared with the above-described diffusion resistor: changes depending on a depletion layer, so-called back bias dependence, since a junction is separated by applying a reverse bias voltage between it and the neighboring semiconductor region, while the polycrystalline silicon resistor 7 does not have such a back bias dependence; depletion layer is changed depending on a voltage applied thereto to thereby change a resistance value, so-called self bias dependence, while the polycrystalline silicon resistor 7 does not have such a self bias dependence; on the orientation of a wafer and by the influence of stress applied thereto in the assembling-process (e.g., in the molding process), while the polycrystalline silicon resistor 7 is not influenced in its resistance value by the orientation of a wafer and little influenced by the stress in the assembling process; and temperature characteristics.
Now, as one of bipolar transistors, there has been proposed a ultra-high speed bipolar transistor which is constructed in a manner that both a base leading-out electrode and an emitter leading-out electrode are formed by a polycrystalline silicon film, then a base region and an emitter region are formed in a self-alignment fashion by diffusing impurities from the polycrystalline silicon film serving as the emitter leading-out electrode. FIG. 8 illustrates an example of methods of manufacturing the ultra-high speed bipolar transistor. As shown in FIG. 8A, on a major surface of a first conductivity type, e.g., p-type silicon substrate 11, a second conductivity type, e.g., n-type collector buried region 12 and a p-type channel stopper region 13 are formed, then an n-type epitaxial layer 14 is grown thereon. Thereafter, a highly-doped n-type collector leading-out region 15 reaching to the collector buried region 12 is formed, and a field insulating film 16 is formed by the local oxidation on the regions except for the collector leading-out region 15 and a region 14A on which base and collector regions are formed in the succeeding processes. Then, a thin insulating layer, e.g., SiO.sub.2 layer 17 is formed on an entire surface thereof, and a portion thereof corresponding to the region 14A is opened to form a first polycrystalline silicon layer 18 serving as a base leading-out electrode by the CVD process, then boron acting as p-type impurities is doped to the polycrystalline silicon film 18. Thereafter, the p+ polycrystalline silicon film 18 is subjected to the patterning process by a first resist mask 19 having a pattern corresponding to the external configuration of the base leading-out electrode.
Referring to FIG.

REFERENCES:
patent: 4916507 (1990-04-01), Boudou et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of manufacturing semiconductor devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of manufacturing semiconductor devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of manufacturing semiconductor devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2371944

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.