Method of manufacturing polyester granules with improved...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S349000, C264S176100, C264S17800F, C264S211130

Reexamination Certificate

active

06274659

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a process for the preparation of polyester granules (compound) having improved photochemical and thermal stability for undyed or spun-dyed filaments, and the use thereof.
2. Prior Art
For reasons of environmental protection and for applications where long filaments and large amounts of filaments of constant levelness and good color fastness are required in thermoplastic filaments, the so-called spin dyeing process has successfully become established (DE-C-2 708 789). Predominantly polymer-soluble, heat-stable organic dyes having better or poorer lightfastnesses were used. With the constantly increasing requirements for lightfastness, for example in the automotive sector, where the dyed fiber material is exposed not only to the influence of light but simultaneously to the action of considerable heat, organic and inorganic pigments are increasingly being used. Since the color range of the pigments which can be used for spin dyeing is still very modest, the continued use of polymer-soluble dyes is unavoidable. Because these dye components are predominantly so-called shading dyes, the action of extreme light and heat results not only in the usual fading but in the even more serious deficiency of a color shift. To successfully protect the spun-dyed fiber material from UV radiation, so-called UV absorbers must additionally be used.
However, the technical application of these additives has proved particularly disadvantageous, particularly owing to their tendency to sublime and owing to their low melting point of less than 180° C. Thus, conventional dusting methods, for example in the double-cone dryer or tumbler with simultaneous drying in high vacuum at temperatures above 150° C., are ruled out owing to loss of additive and soiling of the evacuation units and caking of the granule/additive bed. Continuous metering of the additive into modern, integrated and more efficient spinning lines, i.e. addition directly before the extruder to the hot granules from the continuous dryer, is not feasible owing to the known problems, such as sintering, blockage of the granule pipe and bridging. Even the addition to the cold granules merely shifts the problems to the melting zone of the extruder, where feed problems and failure to control the pressure/speed regulation owing to premature melting of the additive make satisfactory and reliable production impossible.
It is also known that dye preparations can be injected directly to the polyester melt stream, shortly before the spinneret (Chemiefaser/Textil-Industrie, 1978, pages 1048/49); here, it is necessary to choose a carrier medium which must be liquid at the temperature of molten polyester and must be completely compatible with the latter.
SUMMARY OF THE INVENTION
It is the object of the present invention to provide a process for the preparation of polyester compound granules which do not have the deficiencies listed, which process permits photochemical and thermal stabilization of undyed and spun-dyed filaments, in particular polyester filaments, for the production of multifilaments, monofilaments, flock and staple fiber for textile and industrial purposes.
This object is achieved, according to the invention, by mixing the UV absorber together with a colorant at room temperature with a polyester powder in a first process step and, in a second process step, metering 1-100% by weight of this mixture with 0-99% by weight of PET granules into the cooled feed zone of a twin-screw compounding extruder, melting, kneading and homogenizing said feed and cutting the polymer strands cooled in a water bath.
It has proved expedient to mix colorant and UV absorber with the given substrate in powder form at room temperature, according to the desired degree of dilution. This feed mixture is then metered not directly into a spinning extruder but into a twin-screw compounding extruder and is melted, kneaded and homogenized, and the colored strands cooled in a water bath are cut to give compound granules. The extruder feed zone is preferably not heated. As the UV absorber is now incorporated in the substrate, the additive-related process problems are solved. The present compound can now be melt-spun without problems on any suitable line.
Suitable colorants are those which have a melting point of >180° C. Colorants such as perinone and anthraquinone dyes and organic and inorganic pigments have proved particularly suitable.
Suitable UV absorbers are commercial UV absorbers, such as, for example, 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenyl)phenol. This group of UV absorbers has a melting point in the range of 135-145° C. Further additives, such as antioxidants, and preferably mixtures of UV absorbers with antioxidants are also suitable.
It has surprisingly been found that the addition of a UV absorber in a concentration of 0.1-5%, preferably between 0.1 and 1%, in particular of 0.2-0.5%, based on the finished polyester fiber, increases the lightfastnesses (lightfastness+Fakra test) of the spun-dyed polyester by at least 1.0-1.5 grades, and the loss in breaking strength are [sic] reduced by at least 50%.
The filament samples for determining the lightfastness (loss in breaking strength in %) were exposed to light in accordance with the lightfastness test method for standard SN-ISO 105 B02, and the resulting loss in breaking strength in % was calculated by the following formula, where (BS) denotes the breaking strength:
Loss



in



BS
=
100
-
BS



after



exposure



to



light
BS



without



UV



absorber
,
before



exposure



to



light
×
100
The FAKRA was carried out according to DIN 75202.
The invention is to be illustrated in more detail with reference to examples.


REFERENCES:
patent: 4524165 (1985-06-01), Musser et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of manufacturing polyester granules with improved... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of manufacturing polyester granules with improved..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of manufacturing polyester granules with improved... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2494285

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.