Metal working – Method of mechanical manufacture – Heat exchanger or boiler making
Patent
1990-09-26
1992-02-04
Eley, Timothy V.
Metal working
Method of mechanical manufacture
Heat exchanger or boiler making
2985054, F28F 304
Patent
active
050849662
DESCRIPTION:
BRIEF SUMMARY
TECHNICAL FIELD
The present invention relates to a method of manufacturing a heat pipe semiconductor cooling apparatus for cooling a power semiconductor such as a thyristor.
BACKGROUND ART
The present inventors have disclosed a cooling apparatus using a heat pipe as a semiconductor cooling apparatus for, e.g., a thyristor in Published Unexamined Japanese Patent Application No. 60-57956. As shown in FIGS. 7 and 8, (Prior Art) in this heat pipe semiconductor cooling apparatus, fins 2 consisting of a metal such as aluminum having high heat conductivity are fitted on heat pipes 1 consisting of a metal such as copper having high heat conductivity to form a radiating portion 3. Lower end portions of the heat pipes 1 are fitted in a metal block 4 consisting of, e.g., copper or aluminum. A semiconductor element such as a thyristor is mounted on the metal block 4. Heat generated by the semiconductor element is conducted to the heat pipes 1 and radiated from the fins 2 by natural or forcible cooling. As a result, the operation efficiency of the semiconductor element is improved.
In addition, an insulating heat pipe semiconductor cooling apparatus in which an insulating cylinder consisting of, e.g., aluminum is arranged in an intermediate portion of the heat pipe or a portion between the heat pipe and the metal block has been developed.
In the manufacture of these heat pipe semiconductor cooling apparatuses, boring processing is performed one or a plurality of times for the metal block 4 by using a drill or the like to form (non-through) holes 5 having a predetermined depth. Subsequently, a pre-treatment such as oxide film removal is performed for the holes 5. Thereafter, one end portion of the heat pipe 1 is inserted in the hole 5. A solder 6 or the like is filled in a gap between the heat pipe 1 and the hole 5 to integrally bond the heat pipe 1 and the metal block 4.
In such a conventional method, however, the boring processing is performed by an individual NC (numerically controlled) drill machine. Therefore, a long time period is required for the boring processing, and precision of the processing is poor. In addition, the boring processing increases manufacturing cost.
DISCLOSURE OF INVENTION
The present invention discloses a method of manufacturing a heat pipe semiconductor cooling apparatus, comprising the steps of:
forming one or a plurality of through holes in a metal elongated member;
cutting the metal elongated member into a predetermined length to obtain a metal block having a predetermined shape;
sealing one end portion of each of the through holes;
inserting a low-temperature solder and one end portion of a heat pipe in the sealed through hole and bonding the parts by heating, thereby constituting a heat-absorbing portion; and
mounting fins on the other end portions of the heat pipes by press fitting to constitute a radiating portion.
There is also provided according to the present invention, a method of manufacturing a heat pipe semiconductor cooling apparatus, comprising the steps of:
forming one or a plurality of through holes in a metal elongated member;
cutting the metal elongated member into a predetermined length to obtain a metal block having a predetermined shape;
placing the metal block on a heat-resistant flat plate to seal cavities of the through holes, inserting a low-temperature solder and one end portion of a heat pipe in each through hole, and bonding the parts by heating, thereby constituting a heat-absorbing portion., and
mounting fins on the other end portions of the heat pipes by press fitting to constitute a radiating portion.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a front view showing a heat pipe semiconductor cooling apparatus manufactured in accordance with an embodiment of the present invention;
FIG. 2 is a plan view showing the heat pipe semiconductor cooling apparatus shown in FIG. 1;
FIG. 3 is a front view showing an elongated member for manufacturing a metal block;
FIG. 4 is a perspective view showing a metal block manufactured from the elongated member shown in FI
REFERENCES:
patent: 2928166 (1960-03-01), Worn et al.
patent: 3993126 (1976-11-01), Taylor
patent: 4675783 (1987-06-01), Murase et al.
patent: 4932469 (1990-06-01), Beatenbough
Eley Timothy V.
The Furukawa Electric Co. Ltd.
LandOfFree
Method of manufacturing heat pipe semiconductor cooling apparatu does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of manufacturing heat pipe semiconductor cooling apparatu, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of manufacturing heat pipe semiconductor cooling apparatu will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-340771