Electrolysis: processes – compositions used therein – and methods – Electrolytic erosion of a workpiece for shape or surface... – With irradiation or illumination
Reexamination Certificate
2001-11-01
2004-04-27
Ryan, Patrick (Department: 1745)
Electrolysis: processes, compositions used therein, and methods
Electrolytic erosion of a workpiece for shape or surface...
With irradiation or illumination
C205S118000, C205S151000, C205S205000, C205S209000, C205S210000, C205S212000, C205S218000, C205S221000, C205S223000, C205S224000, C205S229000, C216S008000, C216S009000, C216S010000, C216S049000, C216S053000, C216S056000, C216S067000, C216S075000, C216S083000, C216S100000
Reexamination Certificate
active
06726829
ABSTRACT:
FIELD OF THE INVENTION
In general, the present invention relates to percutaneous transluminal devices and methods which are used to treat obstructed (sclerotic) vessel lumina in humans. In particular, the present invention is an improved method for fabricating stents or prostheses. In addition, the improved method employs a novel apparatus.
BACKGROUND OF THE INVENTION
Cardiovascular disease is commonly accepted as being one of the most serious health risks facing our society today. Diseased and obstructed coronary arteries can restrict the flow of blood and cause tissue ischemia and necrosis. While the exact etiology of sclerotic cardiovascular disease is still in question, the treatment of narrowed coronary arteries is more defined. Surgical construction of coronary artery bypass grafts (CABG) is often the method of choice when there are several diseased segments in one or multiple arteries. Conventional open heart surgery is, of course, very invasive and traumatic for patients undergoing such treatment. In many cases, less traumatic, alternative methods are available for treating cardiovascular disease percutaneously. These alternate treatment methods generally employ various types of balloons (angioplasty) or excising devices (atherectomy) to remodel or debulk diseased vessel segments. A further alternative treatment method involves percutaneous, intraluminal installation of one or more expandable, tubular stents or prostheses in sclerotic lesions. Intraluminal endovascular prosthetic grafting is an alternative to conventional vascular surgery. Intraluminal endovascular grafting involves the percutaneous insertion into a blood vessel of a tubular prosthetic graft and its delivery via a catheter to the desired location within the vascular system. The alternative approach to percutaneous revascularization is the surgical placement of vein, artery, or other by-pass segments from the aorta onto the coronary artery, requiring open heart surgery, and significant morbidity and mortality. Advantages of the percutaneous revascularization method over conventional vascular surgery include obviating the need for surgically exposing, removing, replacing, or by-passing the defective blood vessel, including heart-lung by-pass, opening the chest, and general anesthesia.
Stents or prostheses are known in the art as implants which function to maintain patency of a body lumen in humans and especially to such implants for use in blood vessels. They are typically formed of a cylindrical metal mesh which can expand when pressure is internally applied. Alternatively, they can be formed of wire wrapped into a cylindrical shape. The present invention relates to an improved method of manufacturing stents.
Stents or prostheses can be used in a variety of tubular structures in the body including, but not limited to, arteries and veins, ureters, common bile ducts, and the like. Stents are used to expand a vascular lumen or to maintain its patency after angioplasty or atherectomy procedures, overlie an aortic dissecting aneurysm, tack dissections to the vessel wall, eliminate the risk of occlusion caused by flaps resulting from the intimal tears associated with primary interventional procedure, or prevent elastic recoil of the vessel.
Stents may be utilized after atherectomy, which excises plaque, or cutting balloon angioplasty, which scores the arterial wall prior to dilatation, to maintain acute and long-term patency of the vessel.
Stents may be utilized in by-pass grafts as well, to maintain vessel patency. Stents can also be used to reinforce collapsing structures in the respiratory, biliary, urological, and other tracts.
As described in U.S. Pat. No. 4,776,337 issued to Palmaz, the cylindrical metal mesh shape is produced by laser cutting a thin walled metal tube. A laser is used to cut away all but the lines and curves of the mesh. The method of U.S. Pat. No. 4,776,337 is applicable for relatively large mesh shapes and for meshes whose lines are relatively wide. However, for more delicate and/or intricate shapes, the spot size of the laser is too large.
European Patent Application EP 0 709 067 A2 describes a stent fabrication method of preparing a flat pattern design, cutting the pattern in the flat sheet, deforming the sheet to cause the edges to touch, connecting the edges at least at one point usually by a welding process, and then polishing the finished product. The disadvantage of this process is that the flat sheet must be deformed to form the final tubular configuration and that there is a longitudinal attachment point which provides a discontinuous outer contour. In addition, this process requires several critical manufacturing steps which are eliminated by the present invention.
U.S. Pat. Nos. 5,514,154 and 5,421,955 describe a stent manufacturing process utilizing a computer controlled laser to selectively remove an etchant-resistant coating forming a design resembling a stent. The use of a laser to selectively remove the etchant-resistant coating is a relatively expensive and complicated process. The laser must be linked to a computer controlled X-Y movement system that must precisely control the rotation and movement of the laser for stent fabrication. Variances in this process will transcend into variability in the fabricated stent. The present invention neither requires the use of an expensive laser system nor the complex movement system.
It is, therefore, an object of the present invention to provide an apparatus to facilitate a stent fabrication method which can produce stents with relatively intricate, delicate, and detailed designs from a tubular member which negates the disadvantages of the prior designs.
In addition, it is a further object of the present invention to provide an apparatus to facilitate a method of fabricating a stent which involves processing a tubular member whereby no connection points to join the edges of a flat pattern are necessary.
SUMMARY OF THE INVENTION
The present invention involves an apparatus to facilitate the method of fabricating a stent by processing a tubular member. The stent production process is a multi-step, photolithographic process in which a small-diameter metal tube is coated with photoresist, which is photolithographically patterned and developed, after which the metal tube is chemically etched to form a tubular stent with apertures corresponding to the photoresist pattern. During the fabrication process, the novel apparatus exposes a coated tubular member to a precise pattern of light (UV) dictated by a specifically designed film or mask which moves over the tubular member as it is rotated.
The method of manufacture includes the steps of first cleaning the tubular member with an appropriate solution. The tubular member is comprised from stainless steel, platinum, gold alloy, or a gold/platinum alloy, but a number of metallic elements can be employed.
Once the tubular member is cleansed of contaminates, the outer surface is uniformly coated with a photo-sensitive resist. Optionally, a coupling agent or surface treatment may be used to facilitate the bonding of the photo-sensitive resist to the tubular member. The coupling agent or surface treatment is not essential in that some tubular member compositions bond directly to the photo-sensitive resist solution without the need for a coupling agent.
This coated tubular member is then placed in the apparatus designed to mount or rotate the tubular member while the coated tubular member is exposed to designated pattern of light preferably in the ultraviolet (UV) range. The apparatus controls the exposure of the coated tubular member by utilizing a photographic film or mask with a specified imprinted configuration, transferring the light in the specified pattern to the coated tubular member. The light waves can either activate the photo-sensitive coating causing the areas where the light is present to expose and cross-link the photo-sensitive material or can de-activate a photo-sensitive material causing the unexposed areas to remain intact while the exposed areas can be easily removed. In th
Parsons Thomas H
Ryan Patrick
Sci-Med Life Systems, Inc.
Vidas Arrett & Steinkraus
LandOfFree
Method of manufacturing a stent does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of manufacturing a stent, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of manufacturing a stent will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3219493