Method of manufacturing a ski

Plastic and nonmetallic article shaping or treating: processes – Mechanical shaping or molding to form or reform shaped article – Plural sequential shaping or molding steps on same workpiece

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S446000, C029S525010, C029S527500, C264S320000, C264S328100, C264S339000

Reexamination Certificate

active

06764635

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to methods for manufacturing skis for use upon snowmobiles and like vehicles that operate upon snow, and more specifically it relates to a method of manufacturing a ski for creating a preload force upon a front portion of a ski in combination with a resilient preload member.
2. Description of the Prior Art
Skis for snowmobiles and like vehicles have been in use for years. A snowmobile or like vehicle typically is comprised of a frame, a track within the rear portion of the vehicle, and a pair of skis controllably attached to a steering structure of the vehicle. Skis are utilized for supporting and steering the vehicle during operation upon snow and other surfaces.
Skis for snowmobiles and like vehicles are typically constructed of either metal, or a combination of metal and plastic. Regardless of the material utilized, conventional skis for snowmobiles and like vehicles are manufactured utilizing the same process as shown in
FIGS. 1 and 2
of the drawings. More particularly, the ski is molded with the desired curvature within the front portion of the ski and a loop member is attached to the tip of the front portion and the ski without stressing the front portion of the ski (i.e. the front portion is in a relatively relaxed state).
FIGS. 1 and 2
also illustrate the usage of a rigid metal saddle removably attached to an upper surface of the ski body for securing to the snowmobile.
Regarding metal only skis, each ski is formed into an elongate rigid structure having a relatively straight rear to middle portion with a front portion containing a desired curvature utilizing conventional metal working procedures without stress existing within the front portion. A stiff loop member, usually constructed of an elongate metal rod structure, is attached to the front end of the ski and to the middle portion of the ski. The loop member is typically welded to the front end of the ski and to the middle portion of the ski. The loop member is designed for preventing the pointed front end from injuring a third-party, for grasping when attempting to move the snowmobile, and for increasing the overall strength of the front portion when encountering obstacles during forward movement of the vehicle.
More recently, skis for snowmobiles and like vehicles have been constructed of a combination metal and resilient plastic, such as ultra high molecular weight (UHMW) polyethylene, which allows for increased flexibility of the ski when encountering obstacles. The main body of the ski is comprised of a plastic material typically manufactured utilizing injection molding or blow molding wherein the rear portion to middle portion is molded relatively straight with the front portion molded to possess the desired curvature without stress existing within the front portion. A rigid metal saddle is attached to the middle portion of the plastic ski for allowing attachment of the ski to the front suspension of the snowmobile. A loop member, typically constructed of plastic, is attached to the front end of the ski and then to the middle portion of the ski with no stress contained within the front portion thereof. As with loop members utilized with metal skis, the loop member is designed for preventing the front end of the ski from injuring a third-party, for grasping when attempting to move the snowmobile, and for increasing the overall strength of the front portion when encountering obstacles during forward movement of the vehicle.
One of the main problems with conventional ski manufacturing processes, for either metal or metal-plastic skis, is that they mold the front portion of the ski into the desired curvature and then secure a loop member between the middle of the ski to the front end of the ski in order to keep the front end of the ski from bending rearwardly when engaging obstacles. A further problem with conventional ski manufacturing processes is that they cause the front portion of the ski to be less flexible because of the loop member attempts to keep the front end of the ski in the current position. A further problem with conventional ski manufacturing processes is that the combination of the loop member and the static curved portion creates a rigid structure that is unable to significantly flex when encountering an obstacle. Another problem with conventional ski manufacturing processes is that the rigid front portion of the ski attempts to “pivot” about the connection point of the loop member in the middle portion of the ski since the front portion is unable to significantly flex when encountering an obstacle.
While conventional ski manufacturing processes may be suitable for the particular purpose to which they address, they are not as suitable for creating a preload force upon a front portion of a ski utilizing a resilient preload member thereby enhancing the overall performance of the ski. Conventional ski manufacturing processes create a semi-rigid structure within the front portion of the ski thereby reducing their ability to properly flex when encountering obstacles.
In these respects, the method of manufacturing a ski according to the present invention substantially departs from the conventional concepts and designs of the prior art, and in so doing provides an apparatus primarily developed for the purpose of creating a preload force upon a front portion of a ski in combination with a resilient preload member.
SUMMARY OF THE INVENTION
In view of the foregoing disadvantages inherent in the known types of skis and ski manufacturing processes now present in the prior art, the present invention provides a new method of manufacturing a ski wherein the same can be utilized for creating a preload force upon a front portion of a ski in combination with a resilient preload member.
The general purpose of the present invention, which will be described subsequently in greater detail, is to provide a new method of manufacturing a ski that has many of the advantages of the skis and method of manufacturing mentioned heretofore and many novel features that result in a new method of manufacturing a ski which is not anticipated, rendered obvious, suggested, or even implied by any of the prior art, either alone or in any combination thereof.
To attain this, the present invention generally comprises the steps of molding an elongate ski body having a front portion in a position P
1
, removing the elongate ski body from the mold after solidified, applying a force upon a front portion of the elongate ski body thereby bowing the front portion into position P
2
, securing a preload member to the front portion and a middle portion of the elongate ski body, and releasing the force applied to the front portion whereby the resiliency of the front portion deforms the preload member until the front portion is into position P
3
. Position P
1
of the elongate ski body is preferably less than 20 degrees with respect to a longitudinal axis of the elongate ski body.
There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof may be better understood, and in order that the present contribution to the art may be better appreciated. There are additional features of the invention that will be described hereinafter and that will form the subject matter of the claims appended hereto.
In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of the description and should not be regarded as limiting.
A primary object of the present invention is to provide a method of manufacturing a ski that will overcome the shortcomings

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of manufacturing a ski does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of manufacturing a ski, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of manufacturing a ski will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3198734

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.