Metal working – Method of mechanical manufacture – Electrical device making
Reexamination Certificate
2001-03-19
2004-08-17
Tsang-Foster, Susy (Department: 1745)
Metal working
Method of mechanical manufacture
Electrical device making
C427S058000, C429S137000
Reexamination Certificate
active
06776807
ABSTRACT:
RELATED APPLICATION DATA
The present application claims priority to Japanese Applications Nos. P2000-076615 filed Mar. 17, 2000, and P2000-076616 filed Mar. 17, 2000, which applications are incorporated herein by reference to the extent permitted by law.
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a battery on which electrolyte layers are formed by coating electrolyte on electrodes and coating machines employed thereof.
Recently, portable electric equipment has been developed, hence, a battery has an important role as an electric source of such portable electric equipment. The portable electric equipment is required to be miniature and lightweight, in response to this request, the battery is also requested to be miniature in accord with accommodating space inside the portable electric equipment, and to be lightweight in order not to increase weight of the portable electric equipment as possible.
As the battery responding to such a request, in replace of a lead-acid battery and a nickel-cadmium battery, which used to be mainstream in the secondary battery, a lithium secondary battery and a lithium ion secondary battery whose energy density and output density are higher than that of these batteries are expected.
Conventionally, in the lithium secondary battery, or the lithium ion secondary battery, liquid-type electrolyte, which is dissolved lithium ion in nonaqueous solvents is employed as a material working for ion conduct (hereinafter, it is referred to as electrolyte liquid). With this reason, a package must be made of a metal case for preventing leakage and strictly maintain hermeticity inside the battery. However, with the metal case for the package, it is extremely difficult to produce a battery such as a sheet-like battery, which is thin and flat, a card-like battery, which is thin and small, or a battery, which is flexible and freer in shape.
In replace of the electrolyte liquid, it is therefore suggested that a secondary battery is employed such as gel-type electrolyte, which macromolecular compounds has electrolyte liquid including lithium salt, solid-type electrolyte in which lithium salt is diffused to macromolecular compounds having ion conductivity, or electrolyte in which a solid-type inorganic conductor has lithium salt. In these batteries, there is no leakage, so that the metal case is unnecessary as a package. Consequently, miniaturization reduction in weight and thickness in size of the battery by using a laminate film and the like as a package material are obtained to realize a battery freer in shape.
In case of using gel-type electrolyte, with a method described later, electrolyte layers are formed on electrode mixture layers formed on electrode collector. First, a belt-shaped electrode comprising a plurality of the electrode mixture layers intermittently formed on the belt-shaped electrode collector is impregnated in a tank accommodating electrolyte. Next, the belt-shaped electrode is pulled up from the tank and scraped the electrolyte adhering to both faces with a pair of scoops (doctor knives) in order to form the electrolyte layers having a predetermined thickness on the both faces of the belt-shaped electrode. After this, the belt-shaped electrode is cut into a plurality of electrodes between the electrode mixture layers, which are intermittently formed.
In the method of manufacturing the electrolyte layers like this, in case that any accidents happen, which stops the electrode from being conveyed, or decreases a speed at which the electrode is conveyed when the electrode is impregnated, a part of the electrode positioned in the tank when the accidents happen, absorbs the electrolyte than required, which causes a trouble to control an amount of the electrolyte. In this case, it requires that regions where the amount of the electrolyte increases are removed, however, a thickness of the electrolyte layers is almost the same between failure regions and normal regions, which requires control procedures such that the failure regions are marked every time when the accidents happen.
In case that the electrode mixture layers are formed on different regions in the surface and the back when forming the electrode mixture layers on the both faces of the electrode collector, a thickness of the electrode varies in part. Consequently, it is difficult to achieve the electrolyte having an even thickness by a method of scraping the electrode with the pair of scoops.
With a reason that the belt-shaped electrode comprising a plurality of the electrode mixture layers intermittently formed on the electrode collector is impregnated in the tank so as to form the electrolyte layers, the electrolyte directly adheres to the electrode collector on regions where the electrode mixture layers are not formed. In this case, when a lead, which becomes an electrode terminal, is attached to the regions on which the electrode mixture layers are not formed, a stripping electrolyte process is required.
SUMMARY OF THE INVENTION
The present invention has been achieved in consideration of the above problems and its object is to provide a method of manufacturing a battery excellent in productivity and a coating machine employed thereof.
A method of manufacturing a battery according to the present invention is a method of manufacturing a battery provided with electrolyte layers in a positive electrode and a negative electrode, and comprises steps of forming electrolyte layers by pushing electrolyte at least in one side of either the positive electrode or the negative electrode by means of a pressurization means, further, of forming a plurality of the electrolyte layers by intermittently coating the electrolyte at least on one face of a belt-shaped electrode comprising a plurality of electrode mixture layers formed on electrode collector, and of cutting the electrode intermittently coated by the electrolyte between the plurality of the electrolyte layers.
A coating machine according to the present invention comprises a nozzle unit for applying coating materials, a conveying means for conveying a coated body relative to the nozzle unit in a position opposite to the nozzle unit, a pressurization means for applying the coating materials on the coated body while being conveyed with the nozzle unit by the conveying means, a closing means for closing a flowing path of the coating materials inside the nozzle unit, and a control means for intermittently driving the closing means in a manner to intermittently deliver the coating materials from the nozzle unit.
In a method of manufacturing a battery according to the present invention, with a reason that electrolyte layers are formed by pushing electrolyte with a pressurization means, even if any accidents such that a forming machine stops in the middle of forming the electrolyte layers happen, the electrolyte layers formed on an electrode can attain even thickness.
In a coating machine according to the present invention, by means of intermittently driving a closing means, coating materials applied to pressure by a pressurization means can be applied on a coated body-to-be-coated while being conveyed with a nozzle unit. Thereby, electrolyte can be formed on a belt-shaped electrode comprising a plurality of electrode mixture layers is intermittently formed on electrode collector, and by means of cutting the electrode between the electrolyte layers, stacked bodies provided with the electrolyte layers formed on the electrode mixture layers can be formed sequentially.
Other and further objects, features and advantages of the invention will appear more fully from the following description.
REFERENCES:
patent: 4925751 (1990-05-01), Shackle et al.
patent: 5496407 (1996-03-01), McAleavey
patent: 5766356 (1998-06-01), Kurimoto
patent: 5776209 (1998-07-01), Fauteux et al.
patent: 5865860 (1999-02-01), Delnick
patent: 5925283 (1999-07-01), Taniuchi et al.
patent: 6027835 (2000-02-01), Fukumura et al.
patent: 6387564 (2002-05-01), Yamashita et al.
patent: 2000-251920 (2000-09-01), None
patent: 2000-268870 (2000-09-01), None
Akahira Sachio
Imaizumi Kazuhiro
Shida Masayuki
Sugiyama Tsuyoshi
Yoshino Takanobu
Sonnenschein Nath & Rosenthal LLP
Sony Corporation
Tsang-Foster Susy
LandOfFree
Method of manufacturing a battery does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of manufacturing a battery, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of manufacturing a battery will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3272213