Plastic and nonmetallic article shaping or treating: processes – Pore forming in situ – Composite article making
Reexamination Certificate
2002-05-13
2004-11-16
Tentoni, Leo B. (Department: 1732)
Plastic and nonmetallic article shaping or treating: processes
Pore forming in situ
Composite article making
C029S418000, C029S458000, C029S527300, C156S073500, C156S155000, C264S129000, C264S130000, C264S134000, C264S136000, C264S138000, C264S148000, C264S250000, C264S255000, C264S317000
Reexamination Certificate
active
06818162
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is directed to baby-feeding nipples, and, in particular, relates to baby-feeding nipples based on capillary action.
At present there is no baby bottle nipple on the market that even closely approximates the attributes of the human breast nipple, which delivers a continuous supply of milk without entrained air and without hard sucking until the reservoir is empty. In addition, as the baby bites on the human nipple, although it hurts the mother, the fluid flow is not completely cut off.
Commercial baby bottle nipples are made in the form of a hollow rubber shell with a feeding-tip extending from a bulbous portion, which is carried on a flexible and pliable outwardly extending flange. The types of nipples on the market differ principally in the number, size, and types of holes or slits in the feeding-tip and in the external shape that fits into the infant's mouth. In contrast to the human nipple, there are several inherent problems associated with this design. As the baby sucks on the nipple and drains the bottle, the pressure inside the bottle is gradually reduced, resulting in a vacuum. As the baby continues to suck, the pressure will ultimately be reduced to such an extent that the nipple collapses and liquid can no longer be sucked out by the infant. At this point the infant becomes frustrated and sucks harder, frequently swallowing air, which is very undesirable since it results in colic and/or the need for burping. In addition, if the baby bites on the hollow nipple, or if particulates clog the nipple holes, the flow is totally cut off and no fluid is delivered. This also frustrates the infant. Finally, dentists have found that current nipple technology damages a baby's bite; they recommend that babies breast feed rather than use current nipple technology.
It is obvious that there is a need to improve on the current state-of-the-art in baby feeding technology. There have been numerous attempts in the past to improve upon baby-feeding technology, in particular, nipple design. In fact, in the patent literature there are scores of patents in this area, some of which go back more than a century. To address the problem of a vacuum forming in the bottle, there have been numerous means to allow the entrance of air. One of the oldest examples, from 1901, involved the use of a concentric nipple design. Other examples involve the use of a tube or check valve in the nipple mounting flange or an air valve on the side of the bottle to let air into the bottle. An alternate approach to compensate for the vacuum is to use a collapsible plastic sac inside a baby bottle shell. In operation, the sac collapses during feeding, thus minimizing the amount of air that the baby ingests. A recent example (U.S. Pat. No. 6,053,342) involves the use of a flexible diaphragm with slits for pressure equalization.
Even with these improvements, the baby can still close off the nipple by biting, can still swallow air, and, in contrast to the human breast, the baby must suck harder to get the fluid. To alleviate this last problem and deliver fluid to the infant without hard sucking, several different versions of a nipple pump with a check valve have been proposed, for example, U.S. Pat. No. 2,960,088. These pumps are actuated by the infant biting on the nipple. Each time the infant presses down on the nipple, fluid is squirted into its mouth and each time the infant releases the nipple, the nipple is refilled.
For more than a century there have been scores of improvement patents for a baby bottle system that delivers fluid to an infant. Some of these have involved the fluid container, others have involved the nipple, and still others have involved both. To the applicants' knowledge the only two significant improvements over the past century that are in commercial production are the collapsible sack and the elastomeric diaphragm with resealable perforations both of which help to eliminate the sucking of air by the infant. Most other approaches tend to be complex in construction, difficult and expensive to manufacture, difficult to clean and sterilize, or simply do not function as described.
Although two separate systems for dealing with the vacuum generated inside of the bottle are commercially available, it should be noted that there are still shortcomings associated with these two approaches. The thin plastic bag that collapses during feeding minimizes but does not eliminate ingestion of air and must be replaced after each feeding, because it cannot be sterilized. This, of course, results in a continuing expense beyond that of the initial expense of the bottle and nipple.
The elastomeric diaphragm with resealable perforations, being a mechanical type of check-valve, also possesses the shortcomings associated with this type of system. Like all check-valves, it is susceptible to leakage due to incomplete closure. This can result from clogging, such as particulates lodging in the slit, or from distortions in the slits. These distortions can be caused by elastomeric material changes (resulting from prolonged exposure to heat or sunlight for example) or from mechanical stresses on the edges of the slits as they open or close. In addition, like all check-valves, there is a threshold value at which each of the valves open. This threshold value, because it has to keep the valve from leaking, has to be significant and can exceed the sucking effort of a weak infant, especially after changes resulting from either time or usage. Of course, the valve will not function at this point. Additionally, if, for example, a sugar-based fluid is placed in the bottle and then allowed to dry on the diaphragm, the slit valves will not open at all until the sticky substance is removed. Finally, it should be noted that it is very difficult to clean residual fluid and bacteria from the slits when they are in their normally closed position. This can result in illness.
Clearly there is a need for a simple, inexpensive baby bottle nipple that more closely resembles the human breast nipple and its positive attributes.
Accordingly, it is an object of the present invention to provide a process for making a nursing nipple that delivers milk or water-based fluid to an infant without hard sucking by means of capillary pressure in the same way as the human breast.
Another object of the present invention is to provide a process for making a nipple with microscopic fluid pathways that cannot be closed-off when an infant bites on them and are easy to completely clean and sterilize.
Yet another object of the present invention is to provide a process for making a nipple having leak-proof hydrophobic microscopic pathways that are always open to relieve the slightest vacuum.
A further object of the present invention is to provide a process for making a nipple having an integral microscopic filter in the nipple that will keep particulates from clogging the nipple.
Other objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
SUMMARY OF THE INVENTION
In accordance with the present invention there are provided methods for fabricating baby bottle nipples which mimic the function of the human breast nipple. In the human breast nipple, milk is delivered to the baby through 15-25 fluid-delivery capillaries called lactiferous ducts. These ducts are 2-4 centimeters in length and 500-900 microns in diameter. Baby bottle nipples fabricated in accordance with the methods of this invention have the common feature of at least one hydrophilic fluid delivery passage. In one embodiment, the fluid delivery passage is a microtube, as hereinafter described. In another embodiment, the fluid delivery passage is a microchannel, also hereinafter described. In yet another embodiment, the fluid delivery p
Hoffman Wesley P.
Pechenik Alexander
Wapner Phillip G.
Bricker Charles E.
Kundert Thomas L.
Tentoni Leo B.
The United States of America as represented by the Secretary of
LandOfFree
Method of manufacture of baby-feeding nipple does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of manufacture of baby-feeding nipple, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of manufacture of baby-feeding nipple will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3360723