Method of making wall and floor coverings

Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S180000, C156S181000, C156S296000

Reexamination Certificate

active

06630046

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to wall and floor coverings based on a laminate carrier including a fiberglass mat and an organic synthetic non-woven, and to a method of preparing the same.
2. Description of the Related Art
Carriers composed of bonded fabrics are useful in roofing felts and insulation. They are particularly useful in wall and floor coverings of constructions such as residential and commercial structures.
A floor and wall covering is described in Patent Document WO 98/17455, wherein the covering is manufactured without the use of a carrier. A plastic material in the form of spherically shaped particles are placed on a substrate, such as a conveyor. A band conveyor made of steel is provided on which the spheres are sintered together.
Various other laminates employed as floor and wall coverings and their method of manufacturing are known in the art. For example, European Patent Document EP 0 132 325 B1 discloses a method for fixing a surface covering on a bottom covering. A glass mat is used as a carrier and it is coated with a PVC material.
Patent Document WO 97/19219 A1 discloses a floor covering based on a carrier coated on both sides. European Patent Document EP 0 899 372 A2 simply describes a coated textile glass mat.
Some of the disadvantages associated with the carrier laminates described above is the mechanical, dimensional and noise attenuation of these composites when they are used as wall or floor coverings.
To meet the requirements of the flooring and insulation industries, it is an object of the invention to provide a wall or flooring carrier laminate based on two or more layers including a fiberglass mat and an organic synthetic fibers non-woven, bound by needling.
It is another object of the present invention to provide a wall or floor covering having improved noise attenuation properties, and in particular reduced noise propagation, generated from walking a floor having such a covering.
It is a further object of the present invention to provide wall or floor coverings which are high adaptable to thermal changes and provides crack bridging which may occur. Nevertheless, these coverings provide sufficient elasticity.
It is yet another object of the present invention to provide a wall or floor covering based on a carrier having improved thermal and dimensional stability, wherein the carrier is easily reproduced and provides an increased comfort level (i.e., they are soft).
Other objects and aspects of the invention will become apparent upon review of the specification and claims appended thereto.
SUMMARY OF THE INVENTION
In accordance with a first aspect of the invention, wall and floor coverings based on a carrier coated with one or more layers is provided. The carrier includes a fiberglass containing mat consolidated with a binder, a non-woven made of organic synthetic fibers bounded with the fiberglass containing mat by needling. Part of the organic fibers penetrate through the fiberglass containing mat, and one or more layers coated on a glass fiber side of said carrier, opposite the non-woven synthetic mat.
In accordance with a second aspect of the invention, a method for manufacturing wall and floor coverings based on a carrier coated with one or more layers is provided. The process includes providing an organic synthetic fiber or chemical fiber non-woven, and a fiberglass containing mat pre-consolidated with a binder. The mat and the non-woven are bounded by needling such that a portion of the organic synthetic fibers penetrate through said fiberglass containing mat and optionally a part of the fibers emerges from the side of synthetic fiber non-woven and lies adjacent thereto. One or more layers are coated on the glass fiber side of the bounded carrier opposite the non-woven organic mat.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
The invention will now be described with reference to the exemplary embodiments thereof. In an exemplary embodiment of the invention, wall and floor coverings based on a carrier coated with one or more layers. The carrier includes a fiberglass containing mat and an organic synthetic fibers non-woven bound by needling in a manner where part of the synthetic fibers may extend through the entire fiberglass mat, and preferably a part of the organic fiber lie adjacent to the side opposed to the non-woven organic non-woven. The laminate (e.g., composite) includes one or more layers coated on the same glass fiber side, opposite the non-woven.
The synthetic fibers can be staple fiber, but preferably filamentous fibers. These filamentous fibers are also known to those skilled in the art as “endless” fibers. The fibers are preferably organic synthetic fibers, such as polyester, polypropylene, polyamide or any other suitable chemical or synthetic fibers. Bico fibers can also be utilized.
The synthetic fibers non-woven can be pre-consolidated before bonding with the fiberglass mat by hydrodynamically, mechanically or thermal means. In addition, thermal fixation may be performed. Pre-consolidation can be also performed by a combination of these techniques.
The fiberglass mat is produced according to either the a so-called wet, or dry method, wherein fibers of E, C class, mixture thereof and ECR glass are pre-consolidated through the employment of preferably a water insoluble binder. Suitable binders include acrylate copolymerized with vinyl acetate, styrene, etc. Other suitable binders include acrylic, urea-formaldehyde or melamine formaldehyde, melamine and urea resins. The diameter of the glass fibers is about 8 to 16 &mgr;m, and preferably about 10 to 13 &mgr;m. The length of the fibers is about 8 to 32 &mgr;m. The weight of the glass mat produced is about 30 to 100 g/m
2
, and preferably about 40 to 70 g/m
2
. It will readily be recognized by the skilled artisan that up to 40 percent of the glass fibers can be substituted by other fibers. In particular, cellulose based fibers, polyacrylonitrile, polyester, polyamide, etc.
The organic synthetic non-woven of staple fiber can be made on a carding machine, which is well known in the art. Preferably, the filamentous non-wovens are made by the spunbond method described in DE OS 24 60 755 and herein incorporated by reference in its entirety. Several spinning beams or the like are utilized to manufacture the so-called curtains which are laid down on a moving conveyor in a randomly distributed arrangement.
The formed synthetic fiber mat is thermally fixed prior to bonding with the fiberglass mat by either calendering or through the utilization of a hot-air oven. Optionally, the mat is passed through an infrared path where the mat is exposed to radiation. In this manner, the thermal shrinking of the non-woven upon formation into a carrier laminate is removed, thereby avoiding a wave formation due to differential shrinkage phenomenon as a result of a subsequent thermal treatment (i.e., coating of the carrier laminate).
The synthetic fibers may be shrunk separately, and therefore before a non-woven is produced using these shrunken fibers. Preferably, the organic fibers are shrunk when they are present in the form of a non-woven or in the form of corresponding layers. The shrinking may take place before a mechanical or hydro-dynamical pre-consolidation. Optionally, the non-woven is shrunk after a corresponding pre-consolidation. The shrinking is preferably performed by heating in an oven at temperatures of about 140 to 220° C.
Upon obtaining the mats, the organic synthetic fibers non-woven is laid on the pre-consolidated fiberglass containing mat where they are mechanically needled together. Needling can be performed such that the needles penetrate the organic fiber non-woven and press part of the organic fibers through the fiberglass mat in a manner where part of the organic fibers emerge from the fiberglass mat, and optionally are adjacent thereto.
Preferably, the mats are bounded to each other by water beam needling (i.e., hydrodynamically). The needling takes place from the side of the non-woven synthetic, and with

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of making wall and floor coverings does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of making wall and floor coverings, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of making wall and floor coverings will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3112436

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.