Method of making superconductor strand

Metal working – Method of mechanical manufacture – Electrical device making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C174S125100, C428S930000, C505S211000, C505S230000

Reexamination Certificate

active

06442827

ABSTRACT:

The invention relates to a high critical temperature (HTc) superconductor strand, and to a method of manufacturing such a strand.
The invention relates more particularly to high critical temperature (HTc) superconductor strands manufactured by the “powder-in-tube” (PIT) method.
BACKGROUND OF THE INVENTION
The PIT technique is known per se and it consists in a first step in densifying HTc superconductor precursors in a metal tube. In a second step, the resulting billet is deformed, e.g. by wire-drawing so as to obtain a “monofilament” strand. In a third step, the monofilament strand is cut up and packed in a new metal case, thereby forming a multifilament billet. The new, multifilament billet is in turn deformed and shaped so as to obtain a multifilament strand having the desired dimensions and shape. During these manufacturing steps, and in order to transform the precursors into the HTc superconductor phase, it is necessary to perform various transforming heat treatments and various intermediate rolling operations to reactivate the precursors. The material constituting the tube or the case must be sufficiently ductile to be capable of withstanding the various wire-drawing and rolling stages, and it must be of a composition that is inert or at least without consequence for the heat treatment used to transform the HTc superconductor precursors into the superconductor phase. The material must be non-polluting with respect to the precursors and it must be sufficiently permeable to oxygen to pass the oxygen required for proper synthesis of the precursors. It is known that pure silver or a compatible silver alloy mixture (e.g. AgPa) can be used as the material for making the billets.
In the description below, the term “compatible silver alloy” is used to designate a silver alloy that is compatible with the stage of synthesizing the precursors, i.e. an alloy that is non-polluting and that is permeable to oxygen.
Certain applications using HTc superconductor multifilament strands require long continuous lengths (e.g. for superconductor coils). This requires methods of manufacture that enable strands of great length to be obtained in which the electrical and mechanical performance of the strand are maintained along its entire length (and in particular its superconductor phase).
FR 2 752 327 relates to a method of manufacturing an HTc superconductor multifilament strand having a compatible silver alloy matrix, which method is of the powder in tube type and in which:
a square or rectangular monofilament is made having a sheath of compatible silver ally and a core of HTc superconductor precursors;
said monofilament is cut up and the resulting segments are placed in a square or rectangular section compatible silver alloy case, thus making a multifilament billet; and
the heat and mechanical treatments are applied to transform the precursors into the HTc superconductor phase and to obtain the final shape of the multifilament strand.
During manufacture of the multifilament billet, the monofilament segments are arranged layer by layer inside the case, each layer being offset relative to the preceding layer so as to form a configuration of the segment which is staggered in a direction that is perpendicular to the planes of the layers.
The advantages that result from the configuration of FR 2 752 327 are uniform densification of the filaments, a higher deformation ratio of the superconductor phase, and uniform flow of the silver, thereby reducing variations in the section of the strand. As a result, good control is obtained over long strands by reducing the number of defects that can give rise to breakages during manufacture. The compatible silver alloy material used is compatible with the stage of synthesizing the precursors.
Nevertheless, such a strand remains fragile since the compatible silver alloy material used does not have great mechanical strength. As a result the outer sheath of the strand can be torn and that has a significant effect on its properties.
Furthermore, because of the rolling operations, there are portions of the multifilament strand, in particular in the ends of the rectangular section of the strand, in which the density of superconductor filaments is very small. This contributes to poor performance in terms of “engineering” current density J
e
defined as being the ratio of current flowing in the strand divided by the total cross-section of said strand.
To mitigate the mechanical strength problems of the HTc multifilament strand, it is known to use silver alloys such as AgMg or AgCu.
Nevertheless:
Firstly those materials are polluting for the precursors and therefore can only be used as the outer case of the strand, while its matrix is made of pure silver or of compatible silver alloy (e.g. AgPa).
Secondly, those silver alloys which are required for maintaining the mechanical performance of the strand are not sufficiently permeable to oxygen to guarantee proper synthesis of the superconductor phase of the strand. This gives rise to a strand whose mechanical strength is good but whose electrical characteristics are poor.
In the description below, the term “non-compatible silver alloy” is used to designate a silver alloy that is not compatible with the precursor synthesizing stage, i.e. an alloy that is either polluting or else insufficiently permeable to oxygen.
OBJECTS AND SUMMARY OF THE INVENTION
An object of the present invention is to propose of method of manufacturing an HTc multifilament strand that enables improved mechanical strength, optimum synthesis of the superconductor stage, and increased current density J
e
all to be obtained simultaneously.
Another object of the present invention is to propose an HTc multifilament strand of great length presenting improved electrical performance and mechanical strength.
To this end, the invention provides a power-in-tube type method of manufacturing HTc superconductor multifilament conductor having a matrix of compatible silver alloy, in which:
a square or rectangular section monofilament is made having a sheath of compatible silver alloy and a core of HTc superconductor precursors;
said monofilament is cut up into segments and a square or rectangular section case of non-compatible silver alloy is filled with the resulting segments, the segments being placed in superposed layers centered in the case of non-compatible silver alloy, each layer being offset relative to the preceding layer so as to form a staggered configuration of the segments;
the gaps left by the offset at the beginnings and ends of the layers are filled with bars of compatible silver alloy, thereby making a multifilament billet that is symmetrical about a superposition midplane; and
mechanical and heat treatments are applied respectively to obtain the final shape of the multifilament strand and to synthesize the precursors into the HTc superconductor phase;
wherein, during preparation of the multifilament billet, the number of segments per layer is organized so that, in cross-section, the segment layers viewed as a whole have the general shape of a converging-diverging nozzle, the throat of the converging-diverging nozzle shape being substantially contained in said superposition midplane; and
wherein, during the mechanical treatment of said multifilament billet preceding the synthesis heat treatment, a rolling force is applied in a direction perpendicular to the superposition midplane, and at least one of the side edges of the rolled billet is cut off perpendicularly to the superposition midplane, thereby revealing the matrix of compatible silver alloy.
Advantageously, to limit the stresses due to rolling, the mechanical treatments include steps of thermally relaxing stresses.
The two edges perpendicular to the mean superposition plane can be cut off.
The invention also provides a multifilament strand having a generally rectangular matrix of compatible silver alloy, comprising a plurality of HTc superconductor filaments each of cross-section that is generally rectangular in shape and arranged in a configuration that is staggered layer on layer, wherein b

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of making superconductor strand does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of making superconductor strand, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of making superconductor strand will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2895057

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.