Method of making media of controlled porosity and product...

Fabric (woven – knitted – or nonwoven textile or cloth – etc.) – Nonwoven fabric – Melt-blown nonwoven fabric

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C442S334000, C442S381000, C442S382000, C442S401000, C428S131000, C428S132000, C428S137000, C428S138000, C156S167000, C156S181000, C156S296000, C156S308200

Reexamination Certificate

active

06521555

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a method of making fibrous media of controlled porosity, a media having a controlled pore size and a narrow pore size distribution, and a media which combines high vapor permeability and low liquid permeability, and the products thereof.
It is well known to produce a laminate made from various polymers and textiles for use in a wide variety of product applications. For example, meltblown and spunbond materials afford a high level of vapor permeability and liquid permeability when used either by themselves or in combination with one another and/or other porous materials.
Meltblowing is a method for economically producing very small fibers which are mostly suitable for filtration and insulation applications. Fibers smaller than 1 micron in diameter may be produced by meltblowing, and the average fiber diameter in conventional meltblowing is about 4 microns, with fiber size distribution ranging from ¼ micron to 8 microns. To form such small fibers one must star, with polymer resins of very low molecular weight. In this process the nonwoven fabric is formed in one step from the polymer resin into the final meltblown nonwoven fabric. Meltblown fabrics are porous and, significantly, do not have either a controlled pore size or a narrow pore size distribution. Instead, pore size is random and non-uniform, such that a typical meltblown fabric will have a random distribution of pores of various sizes. A meltblown fabric having a controlled pore size and a narrow pore size distribution would have great utility in particular applications—filtration applications, for example. One embodiment of the present invention relates to a meltblown fabric having a controlled pore size and a narrow pore size distribution.
In contrast, spunbonding is very similar to conventional fiber spinning where several processing steps are required to form the spunbond fabric. Spunbond fibers go through a drawing stage and then a laydown stage wherein the drawn fibers are laid down into a matt and the matt is then bonded by a thermobonding calender or mechanical entangling to form the nonwoven fabric. The resins used in the spunbonding process have lower molecular weight than those used in the conventional melt spinning process and higher molecular weights than those used in the conventional meltblowing process. Fibers smaller than 10 microns in diameter are very difficult to produce economically by spunbonding, and the average fiber diameter for conventional spunbonding processes is about 18 microns.
However, for particular applications, such as those in the health care industry—e.g., infant diapers, sanitary pads, adult incontinence wear, medical surgical dressings, and the like—the product must perform three distinct functions: First, a front or top sheet intended to contact the patient's skin must allow the passage of moisture (e.g., blood, urine and like liquids) therethrough while at the same time providing an acceptable feel to the wearer's skin. Second, an absorbent core, intermediate the top sheet and the backsheet, must be capable of absorbing the moisture which has been received through the top sheet. Third, a backsheet, on the back of the absorbent core, prevents leakage of moisture outwardly of the laminate. Another embodiment of the present invention relates specifically to the backsheet component.
The barrier properties of the backsheet (i.e., the trapping of moisture and other liquids) are typically achieved by incorporating into the backsheet a plastic layer or film which acts as a moisture barrier. Various major disadvantages associated with the utilization of such barrier films are the low moisture vapor transmission rates (MVTR) of the barrier films, undesirable crinkling noise created by the barrier film during usage of the product, and a stiffening of the product (due to the barrier film) which reduces its conformability to the area to which it is applied.
Porous films are typically permeable to both liquid water and water vapor. They may bit made by the incorporation of different organic or inorganic additives into a polymer film, the film then being stretched or fillers removed therefrom chemically. Other conventional methods include mechanical perforation and/or radiation techniques to form the desired holes or slits in the polymeric film. Formation of uniform pore size in a film is very difficult, and porous plastic films are generally more expensive than non-wovens.
On the other hand, non-porous barrier films are typically impermeable to both liquid water and water vapor. As a result, using the impermeable film in a diaper backsheet, for example, makes the diaper hot before exposure to liquid (as the barrier film prevents air circulation) and clammy after exposure to moisture (because the barrier film precludes moisture evaporation). Indeed, the use of an impermeable barrier film in a diaper may cause severe dermatological problems, such as skin rash on infants, and skin sores on adults wearing such non-porous products.
It is also known to form a semi-porous barrier film of controlled porosity which is permeable to water vapor, but impermeable to liquid water—that is, breathable. However, the method of manufacturing such a microporous film of controlled porosity is typically complex and expensive, and requires a relatively specialized polymeric input (for example, conjugate fibers formed of two separately manufactures polymeric materials or laminates formed of two separately manufactured polymeric materials).
Clearly the need remains for a method of economically manufacturing a media of controlled porosity, and in particular a media of controlled porosity that includes high vapor permeability and low liquid permeability, without the use of chemical binders, additives or coatings. Such breathable media would find use in products which are sold in such quantity that any reduction in the cost thereof (e.g., which makes it sufficiently economical for manufacture for use in disposable products) is highly desirable.
Accordingly, it is an object of the present invention to provide a method of making of a media of controlled porosity.
Another object of the invention is to make a media of controlled porosity combining high vapor permeability and low liquid permeability.
Still another object is to provide such a method which does not require a specialized polymeric input.
A further object is to provide such a method which does not require the use of chemical binders, additives or coatings to provide the desired permeability or porosity.
It is also an object of the present invention to provide a material made by the aforesaid method.
It is another object to provide such a material which does not produce noise during use find which exhibits cloth-like feel (hand).
It is a further object to provide such a material which is economical to manufacture (e.g., for use in disposable products).
SUMMARY OF THE INVENTION
It has now been found that the above and related objects of the present invention are obtained in a method of making a non-woven fibrous media of controlled porosity, the method comprising the step of providing a non-woven fabric formed from fibers that are prematurely crystallized during fabric formation to form small polymer crystals therein having low heats of fusion and relatively larger polymer crystals therein having relatively higher heats of fusion. In a preferred embodiment, the fabric is a meltblown fabric formed from meltblown fibers.
The present invention also includes a method of making a non-woven fibrous media combining high vapor permeability and low liquid permeability. The method comprises the steps of providing a non-woven fabric formed from fibers that are prematurely crystallized during web formation and have a wide heat of fusion range distribution, and then calendering the fabric to soften the small polymer crystals therein of low heats of fusion, but not the relatively larger crystals therein of relatively higher heats of fusion, thereby to retain high vapor permeability.
The present invent

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of making media of controlled porosity and product... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of making media of controlled porosity and product..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of making media of controlled porosity and product... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3125460

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.