Method of making flue gas harmless

Furnaces – Process – Treating fuel constituent or combustion product

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C110S344000, C110S346000, C431S004000, C588S253000, C502S400000, C502S515000, C502S516000, C095S142000, C095S900000

Reexamination Certificate

active

06490984

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method for removing and/or reducing formation of harmful substances in flue gas.
2. Description of the Background Art
Various harmful substances are contained in flue gas exhausted from a refuse incineration site or the like, and various treating methods are adopted for removing the harmful substances contained in such flue gas. However, in recent years, extremely toxic chlorides such as dioxins (PCDDS, PCDFS, etc.) may have been contained at a high concentration in flue gas exhausted from a refuse incinerator or the like in some cases, which has become a major social problem.
The incineration treatment of waste in a refuse incineration site is generally conducted through (1) a step of incinerating the waste, (2) a secondary combustion step of heating flue gas generated in the incineration step to a higher temperature to additionally burn unburned substances (for example, carbon monoxide, low molecular weight hydrocarbons, etc.) remaining in the flue gas, (3) a heat recovery step and/or a cooling step to recover heat from the flue gas heated to the higher temperature and/or lowering the temperature of the flue gas, (4) a dust collection step of removing fly ash in the flue gas, (5) a step of making the flue gas harmless by removing harmful substances in the flue gas, and (6) a step of exhausting the flue gas treated in step (5) through a stack. Among these respective steps, dioxins contained in the flue gas are said to be mainly formed in step (3), the heat recovery and/or the cooling step, in which the temperature of the flue gas is lowered, and after that step.
In order to reduce the concentration of chlorides in the flue gas, it is said that spraying of an aqueous solution of calcium hydroxide on the flue gas, which is generally conducted for removing hydrogen chloride in the flue gas, is also effective to some extent. However, this method is not always said to be satisfactory. Therefore, in order to more effectively reduce the chlorides in the flue gas, there is adopted, for example, a method in which flue gas is brought into contact with an adsorbent such as active carbon or active coke to adsorb and remove chlorides in the flue gas. Since this method is simple and effective as a method for removing the chlorides, it is adopted in many refuse incineration site and the like. However, this method requires treating waste active carbon on which the chlorides have been adsorbed and has thus been accompanied by a problem of additional operation cost due to the step of subjecting the waste active carbon to a burning treatment at a high temperature and plant cost due to the burning treatment.
SUMMARY OF THE INVENTION
The present invention has been completed in view of the foregoing circumstances, and has as its object the provision of a method of making flue gas harmless, by which the formation of dioxins and the like in the flue gas can be reduced with good efficiency, and metals contained in fly ash collected in a dust collection step can be prevented from being easily dissolved out.
According to the present invention, there is thus provided a method of making flue gas generated upon incineration of waste harmless, which comprises bringing the flue gas into contact with a reducing agent.
In the method of the present invention, it is preferred that the flue gas is brought into contact with the reducing agent in a step in which the temperature of the flue gas is lowered to 1,000° C. or lower. It is more preferred that the flue gas is brought into contact with the reducing agent in a step in which the temperature of the flue gas is lowered to from 850° C. down to 150° C. It is further preferred that the flue gas be brought into contact with the reducing agent in a heat recovery step of recovering heat of the flue gas and/or a cooling step of lowering the temperature of the flue gas. It is also preferred that the flue gas be brought into contact with the reducing agent after a heat recovery step of recovering heat of the flue gas and/or a cooling step of lowering the temperature of the flue gas, but before a dust collection step. The reducing agent used in the method of the present invention is preferably at least one selected from the group consisting of phosphorous acid and derivatives thereof, hypophosphorous acid and derivatives thereof, metal hydrides, metal hydrogen complex compounds, sulfurous acid and derivatives thereof, boranes, hydrazines, phosphines, hydrogen, and alkali metals. The reducing agent is more preferably at least one selected from the group consisting of phosphorous acid and derivatives thereof, and hypophosphorous acid and derivatives thereof. In the method of the present invention, it is preferred that fly ash in the flue gas be collected in a dust collecting equipment after bringing the flue gas into contact with the reducing agent. As a result, ionic metals contained in the fly ash may be reduced by the reducing agent to keep them in a state in which the metals are hard to dissolve out of the fly ash.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In the present invention, at least one reducing agent selected from the group consisting of phosphorous acid and derivatives thereof, hypophosphorous acid and derivatives thereof, metal hydrides, metal hydrogen complex compounds, sulfurous acid and derivatives thereof, boranes, hydrazines, phosphines, hydrogen, and alkali metals is used as a reducing agent. Examples of the phosphorous acid and derivatives thereof include phosphorous acid, potassium phosphite, sodium phosphite, sodium hydrogen- phosphite, calcium phosphite, magnesium phosphite and ammonium hydrogenphosphite. Examples of the hypophosphorous acid and derivatives thereof include hypophosphorous acid, potassium hypophosphite, sodium hypophosphite and calcium hypophosphite.
Examples of the sulfurous acid and derivatives thereof include sulfurous acid, and sulfites such as ammonium sulfite, sodium sulfite, ammonium hydrogensulfite and sodium hydrogensulfite. Examples of the boranes include boron hydrides (diborane, tetraborane, dihydropentaborane, etc.), monalkyldiboranes (methyldiborane, etc.), dialkyldiboranes (dimethyldiborane, etc.), trialkyldiboranes (trimethyldiborane, etc.), tetraalkyldiboranes (tetramethyldiborane, etc.), and metal salts of boranes (lithium borohydride, sodium borohydride, etc.). Examples of the hydrazines include hydrazine, hydrazine dihydrochloride, hydrazine hydrates, hydrazine hydrochloride and hydrazine sulfate. Examples of the phosphines include primary phosphines such as phosphine, methylphosphine, ethylphosphine, propyl-phosphine, isopropylphosphine, isobutylphosphine, phenyl-phosphine and monoethanolphosphine, secondary phosphines such as dimethylphosphine, diethylphosphine, diisopropyl-phosphine, diisoamylphosphine, diphenylphosphine and diethanolphosphine, and tertiary phosphines such as trimethylphosphine, triethylphosphine, triphenylphosphine, methyldiphenylphosphine, dimethylphenylphosphine and triethanolphosphine. Examples of the alkali metals include metals such as lithium, sodium and potassium. A solution composed mainly of a waste solution from electroless nickel plating containing any of the above phosphorous acid and derivatives thereof and/or any of the above hypophosphorous acid and derivatives thereof may also be used as the reducing agent. The waste solution from electroless nickel plating basically contains, in addition to the phosphorous acid or the derivative thereof and/or the hypophosphorous acid or the derivatives thereof, ions such as a nickel ion, sulfate ion, complexing agent ion and sodium ion, a brightener, a surfactant, a stabilizer, and a trace amount of metal ion(s) dissolved out of a substance to be plated. The concentrations of these components are not always constant. However, the waste solution contains, for example, about 10 to 55 g/liter of phosphite ions, about 80 to 160 g/liter of hypophosphite ions, about 4 to 7 g/liter of nickel ions, about 30 to 75 g/liter of sulfate ions, about 30 to 55

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of making flue gas harmless does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of making flue gas harmless, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of making flue gas harmless will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2937956

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.