Semiconductor device manufacturing: process – Having organic semiconductive component
Patent
1996-12-20
2000-08-22
Booth, Richard
Semiconductor device manufacturing: process
Having organic semiconductive component
438151, 438158, 438257, H01L 5140
Patent
active
06107117&
ABSTRACT:
A process for fabricating thin film transistors in which the active layer is an organic semiconducting material with a carrier mobility greater than 10.sup.-3 cm.sup.2 /Vs and a conductivity less than about 10.sup.-6 S/cm at 20.degree. C. is disclosed. The organic semiconducting material is a regioregular (3-alkylthiophene) polymer. The organic semiconducting films are formed by applying a solution of the regioregular polymer and a solvent over the substrate. The poly (3-alkylthiophene) films have a preferred orientation in which the thiophene chains has a planar stacking so the polymer backbone is generally parallel to the substrate surface.
REFERENCES:
patent: 5498761 (1996-03-01), Weeling et al.
patent: 5574291 (1996-11-01), Dodabalapur et al.
patent: 5596208 (1997-01-01), Dodabalapur et al.
Garnier, et al., All-Polymer Field-Effect Transistor Realized by Printing Techniqes, Sep. 16, 1994.
Yutaka Ohmori et al. "Fabrication and Characteristics of Schottky Gated Poly (3-Alkylthiophene) Field Effect Transistors", Japanese Journal of Applied Physics, vol. 30, No. 4A, pp. L610-L611 (1991).
Hiroyuki Fuchigami et al. "A New Type of TFT Based on a Polymeric Semiconductor", Japanese Journal of Applied Physics, Supplements, pp. 596-598 (1991).
Xuezhou Peng et al. "All-Organic Thin-Film Transistors Made of Alpha-Sexithienyl Semiconducting and Various Polymeric Insulating Layers", Applied Physics Letters, vol. 57, No. 19, pp. 2013-2015 (1990).
Dimitrakopoulos, C.D. et al. "trans-trans-2, 5-bis-2-{5-2,2'-bithienyl} ethenylthiophene: synthesis, characterization, thin film deposition and fabrication of organic field-effect transistors", Synthetic Metals, vol. 89, No. 3, pp. 193-197 (1997).
Chen, F. et al. "Improved Electroluminescence Performance of Poly 3-(Alkylthiophenes) having a High Head-To-Tail (HT) Ratio", Journal of Materials Chemistry, vol. 6, No. 11, pp. 1763-1766 (1996).
Horowitz, G. et al. "Structure dependent properties or organic field-effect transistors" Proceedings of 9th ISHM-European Hybrid Microelectronics Conference, p. 60-67 (1993).
Bao, Zhenan, et al. "Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility" Applied Physics Letters, vol. 69, No. 26, pp. 4108-4110 (1996).
F. Garnier, et al. "All-Polymer Field-Effect Transistor Realized by Printing Techniques", Science, vol. 265, pp. 1684-1686 (1994).
A. Tsumura, et al. "Macromolecular electronic device: Field-effect transistor with a polythiophene thin film", Appl. Phys. Lett., vol. 49 (18), pp. 1210-1212, (1986).
A. Assadi, et al. "Field-effect mobility of poly(3-hexylthiophene)", Appl. Phys. Lett. vol. 53(3) pp. 195-197, (1988).
H. Fuchigami, et al. "Polythienylenevinylene thin-film transistor with high carrier mobility", Apl. Phys. Lett., vol. 63(10), No. 6, pp. 1372-1374 (1993).
Bao Zhenan
Dodabalapur Ananth
Feng Yi
Raju Venkataram Reddy
Booth Richard
Botos Richard J.
Hack Jonathan
Lucent Technologies - Inc.
LandOfFree
Method of making an organic thin film transistor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of making an organic thin film transistor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of making an organic thin film transistor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-579897