Method of making an implantable medical device having a flat...

Metal working – Barrier layer or semiconductor device making – Barrier layer device making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S308100, C361S520000, C607S116000

Reexamination Certificate

active

06648928

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to implantable medical devices (Is) and their various components, including flat electrolytic capacitors for same, and methods of making and using same, particularly a simplified, miniature capacitor connector block and wiring harness utilizing an epoxy droplet and method of making same.
BACKGROUND OF THE INVENTION
As described in the above-referenced parent application Ser. No. 09/104,104, and the provisional application that it claims priority from, a wide variety of IMDs are known in the art. Of particular interest are implantable cardioverter-defibrillators (ICDs) that deliver relatively high energy cardioversion and/or defibrillation shocks to a patient's heart when a malignant tachyarrhythmia, e.g., atrial or ventricular fibrillation, is detected. Current ICDs typically possess single or dual chamber pacing capabilities for treating specified chronic or episodic atrial and/or ventricular bradycardia and tachycardia and were referred to previously as pacemaker/cardioverter/defibrillators (PCDs). Earlier developed automatic implantable defibrillators (AIDs) did not have cardioversion or pacing capabilities. For purposes of the present invention ICDs are understood to encompass all such IMDs having at least high voltage cardioversion and/or defibrillation capabilities.
Generally speaking, it is necessary to employ a DC—DC converter within an ICD implantable pulse generator (IPG) to convert electrical energy from a low voltage, low current, electrochemical cell or battery enclosed within the IPG housing to a high voltage energy level stored in one or more high energy storage capacitor, as shown for example, in commonly assigned U.S. Pat. No. 4,548,209. The conversion is effected upon confirmation of a tachyarrhythmia by a DC—DC “flyback” converter which includes a transformer having a primary winding in series with the battery and a secondary winding in series with the high energy capacitor(s) and an interrupting circuit or switch in series with the primary coil and battery that is periodically opened and closed during a charging cycle. Charging of the high energy capacitor is accomplished by inducing a voltage in the primary winding of the transformer creating a magnetic field in the secondary winding when the switch is closed. The field collapses when the current in the primary winding is interrupted by opening the switch, and the collapsing field develops a current in the secondary winding which is applied to the high energy capacitor to charge it. The repeated interruption of the supply current charges the high energy capacitor to a desired level of several hundred volts over a charging time of the charge cycle. Then, the energy is rapidly discharged from the high voltage capacitor(s) through cardioversion/defibrillation electrodes coupled to the IPG through ICD leads and arranged about or in a heart chamber or vessel if the tachyarrhythmia is confirmed as continuing at the end of the charge time. The cardioversion/defibrillation shocks effected by discharge of such capacitors are typically in the range of about 25 to 40 Joules. The process of delivering cardioversion/defibrillation shocks in this way may be repeated if an earlier delivered cardioversion/defibrillation shock does not convert the tachyarrhythmia to a normal heart rhythm.
Energy, volume, thickness and mass are critical features in the design of ICD pulse generators that are coupled to the ICD leads. The battery(s) and high voltage capacitor(s) used to provide and accumulate the energy required for the cardioversion/defibrillation shocks have historically been relatively bulky and expensive. Presently, ICD IPGs typically have a volume of about 40 to about 60 cc, a thickness of about 13 mm to about 16 mm and a mass of approximately 100 grams.
It is desirable to reduce the volume, thickness and mass of such capacitors and ICD IPGs without reducing deliverable energy. Doing so is beneficial to patient comfort and minimizes complications due to erosion of tissue around the ICD IPG. Reductions in size of the capacitors may also allow for the balanced addition of volume to the battery, thereby increasing longevity of the ICD IPG, or balanced addition of new components, thereby adding functionality to the ICD IPG. It is also desirable to provide such ICD IPGs at low cost while retaining the highest level of performance. At the same time, reliability of the capacitors cannot be compromised.
Various types of flat and spiral-wound capacitors are known in the art, some examples of which are described as follows and/or may be found in the patents listed in Table 1 of the above-referenced parent patent application Ser. No. 09/104,104.
Prior art high voltage electrolytic capacitors used in ICDs have two or more anode and cathode layers (or “electrodes”) and operate at room or body temperature. Typically, the capacitor is formed with a capacitor case enclosing an etched aluminum foil anode, an aluminum foil or film cathode, and a Kraft paper or fabric gauze spacer or separator impregnated with a solvent based liquid electrolyte interposed therebetween. A layer of aluminum oxide that functions as a dielectric layer is formed on the etched aluminum anode, preferably during passage of electrical current through the anode. The electrolyte comprises an ion producing salt that is dissolved in a solvent and provides ionic electrical conductivity between the cathode and the aluminum oxide dielectric. The energy of the capacitor is stored in the electrostatic field generated by opposing electrical charges separated by the aluminum oxide layer disposed on the surface of the anode and is proportional to the surface area of the aluminum anode. Thus, to minimize the overall volume of the capacitor one must maximize anode surface area per unit volume without increasing the capacitor's overall (i.e., external) dimensions. The separator material, anode and cathode layer terminals, internal packaging, electrical interconnections, and alignment features and cathode material further increase the thickness and volume of a capacitor. Consequently, these and other components in a capacitor and the desired capacitance limit the extent to which its physical dimensions may be reduced.
Some ICD IPGs employ commercial photoflash capacitors similar to those described by Troup in “Implantable Cardioverters and Defibrillators,”
Current Problems in Cardiology,
Volume MV, Number 12, December 1989, Year Book Medical Publishers, Chicago, and as described in U.S. Pat. No. 4,254,775. The electrodes or anode and cathodes are wound into anode and cathode layers separated by separator layers of the spiral. Anode layers employed in such photoflash capacitors typically comprise one or two sheets of a high purity (99.99%), porous, highly etched, anodized aluminum foil. Cathode layers in such capacitors are formed of a non-porous, highly etched aluminum foil sheet which may be somewhat less pure (99.7%) respecting aluminum content than the anode layers. The separator formed of one or more sheet or layer of Kraft paper saturated and impregnated with a solvent based liquid electrolyte is located between adjacent anode and cathode layers. The anode foil thickness and cathode foil thickness are on the order of 100 micrometers and 20 micrometers, respectively. Most commercial photoflash capacitors contain a core of separator paper intended to prevent brittle, highly etched aluminum anode foils from fracturing during winding of the anode, cathode and separator layers into a coiled configuration. The cylindrical shape and paper core of commercial photoflash capacitors limits the volumetric packaging efficiency and thickness of an ICD IPG housing made using same.
The aluminum anodes and cathodes of aluminum electrolytic capacitors generally each have at least one tab extending beyond their perimeters to facilitate electrical connection of all (or sets of) the anode and cathode layers electrically in parallel to form one or more capacitor and to make electrical connections to the exterior of the capacitor case. Tab

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of making an implantable medical device having a flat... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of making an implantable medical device having a flat..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of making an implantable medical device having a flat... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3142292

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.