Method of making a weak-field magnetic field sensor having...

Etching a substrate: processes – Forming or treating article containing magnetically...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S200000, C324S247000, C324S248000, C324S260000, C336S232000

Reexamination Certificate

active

06270686

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a weak-field magnetic sensor and includes methods for manufacturing the magnetic sensor. The weak-field magnetic sensor of the invention is useful for the detection of magnetism that is generated from the earth's natural magnetism and other substances.
BACKGROUND OF THE INVENTION
Generally, the basic components of known magnetic sensors are a magnetization coil and a detection coil. When metal substances are put near a sensor, the magnetic field changes due to the electric eddy current generated for the one side nearest the metal substances. The above mentioned change of magnetic field affects detection coil output. This process is utilized to detect magnetism. The magnetic sensor, because of its structure, is not easily affected by heat, light, or the surface of matters for detection. Moreover, it is possible to make small and light magnetic sensors.
The weak magnetic sensor of the prior existing technology has included the following characteristics: the magnetic sensor has adopted highly permeable magnetic materials for its core component. The sensor is composed of a primary coil and a secondary coil. The primary coil senses magnetism while the secondary coil detects the degree of saturation. The secondary coil has a magnetic axis in two directions so it can obtain the vector difference axis. Thus, the magnetic direction of weak-field magnetism can be measured.
In the prior technology, the magnetic materials were processed with precision. Then, the primary and the secondary coil were made utilizing a known wire coil technology. The wire coil technology was applied according to the positioning accuracy of the copper wires covered with the insulator. However, some magnetic materials with high permeability required a specific precision process. Moreover, the need for a separate primary and secondary coil positioning processes caused the following problem: it was difficult to maintain a certain coil pressure as well as evenly maintain the positioning accuracy of coils. Thus, the range of both the degree of detection errors and the level of reception became uncertain. Therefore, it has not been possible to make a thin and small sensor in terms of the structure. The prior art was easily affected by surrounding factors such as broken wires.
SUMMARY OF THE INVENTION
The present invention is directed to a weak-field magnetic sensor that solves the previously described problem of the prior technology. Coil positioning technology is not required. The positioning accuracy can be controlled in increments of microns. There is virtually no unevenness concerning the range of detection errors and the level of reception. It is possible to make a thin and small sensor in terms of the structure disclosed. Moreover, it is not easily affected by outside factors such as broken wires. It is also capable of being mass produced.
The present invention utilizes materials such as alloys that are not affected by stress and which allow fewer changes to magnetic characteristics. It also creates the same advantageous conditions as a wire coil environment by utilizing etching technology. The aforesaid invention is a weak-field magnetic sensor which is characterized by the following features: a certain pattern is etched on an epoxy base thin board with the capacity for vertical conductivity. Circular patterns are etched on the front and on the back surface of the amorphous thin boards. These amorphous thin boards are stacked on both sides of the above mentioned epoxy base to form an amorphous core. The sensor can also have two other epoxy bases and one other amorphous epoxy base. A coil Y is etched on one epoxy base while a coil X is etched on the other epoxy base. Circular patterns are etched on the amorphous epoxy base. These two epoxy bases and the amorphous epoxy base are stacked relative to one another on the top surface and on the bottom surface of the aforesaid amorphous core.
In the present invention, it is preferable that the epoxy base is made of materials that are capable of being etched such as glass epoxy, plastic, etc. It is also preferable to utilize etching process in which the conductor width can be controlled in increments of microns. The same effect can be achieved with the following magnetic sensor: the magnetic sensor utilizes a ring shape core made with the above mentioned amorphous thin board instead of the aforesaid flat board amorphous core. The ring shape core is created by cutting the above mentioned amorphous thin board into rings and etching so that it appears that it had been coiled with a toroidal core. The usage of the aforesaid invention will be explained in greater detail hereinafter referring to the charts.


REFERENCES:
patent: 4385273 (1983-05-01), Lienhard et al.
patent: 4613843 (1986-09-01), Esper et al.
patent: 4733180 (1988-03-01), Hoenig et al.
patent: 5012190 (1991-04-01), Dössel
patent: 5113136 (1992-05-01), Hayashi et al.
patent: 5600240 (1997-02-01), Mikhailovich et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of making a weak-field magnetic field sensor having... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of making a weak-field magnetic field sensor having..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of making a weak-field magnetic field sensor having... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2441684

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.