Method of making a printed circuit board having filled holes...

Metal working – Method of mechanical manufacture – Electrical device making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S840000, C174S260000, C427S006000

Reexamination Certificate

active

06609296

ABSTRACT:

TECHNICAL FIELD
This invention relates to the manufacture of printed circuit boards and particularly to methods for making such boards wherein at least one and preferably several through holes are provided in the board, e.g., for providing interconnections between an upper conductive layer and internal conductive planes and/or to circuitry located on an opposite side of the board.
Cross-Reference To Copending Applications
In Ser. No. (S.N.) 08/672,292, filed Jun. 28, 1996 and entitled “Manufacturing High Density Computer Systems With Circuit Board Assemblies Having Filled Vias Free From Bleed-Out” (inventors A. Bhatt et al), there is described a circuit board structure and method for making same wherein fill material is positioned (e.g., using injection or heat and pressure) in holes (called “vias”) in the board's substrate. A laminate peel-apart structure is used, in addition to one or more photoresist patterns which may be formed. Ser. No. 08/672,292 is now U.S. Pat. No. 5,822,856.
The following patent applications have also been filed from Ser. No. 08/672,292 following a restriction requirement:
Ser. No. 09/030,587, filed Feb. 25, 1998;
Ser. No. 09/033,456, filed Mar. 2, 1998;
Ser. No. 09/033,617, filed Mar. 3, 1998;
Ser. No. 09/021,772, filed Mar. 10, 1998;
Ser. No. 09/041,845, filed Mar. 12, 1998.
In Ser. No. 09/076,649, filed May 12, 1998 and entitled, “Method Of Making A Printed Circuit Board Having Filled Holes And Fill Member For Use Therewith”, there is defined a method of filling circuit board holes using a rupturable layer under the fill, which layer opens to allow fill to enter the hole.
BACKGROUND OF THE INVENTION
Many current printed circuit board constructions require one or more external conductive layers, e.g., circuitry and/or pads for mounting components thereon, and, given today's increased functional demands, a plurality of internal conductive planes, e.g., signal, power and/or ground. To provide effective interconnections between components and the board's conductive circuitry and pads, the use of through holes has been adopted wherein several such holes are passed through the board and electrically coupled in a selective manner to internal and external conductive elements. Such holes typically include a conductive, e.g., copper, layer as part thereof which in turn contacts the also typically copper circuitry and pads.
The term “through hole” or simply “hole” as used herein is meant to include both conductive and non-conductive apertures which may extend entirely through the circuit board or only partly therethrough (such holes are often called “vias” in the art), including between only one or more internal layers without being externally exposed. Examples of various circuit board structures which include the use of holes of these types and various methods of making such holes in circuit boards are defined in several published documents, including the following U.S. Letters Patents, issued on the dates identified:
4,017,968
Weglin
Apr. 19, 1977
4,319,708
Lomerson
Mar. 16, 1982
4,704,791
Chellis et al
Nov. 10, 1987
5,450,290
Boyko et al
Sep. 12, 1995
5,451,722
Gregoire
Sep. 19, 1995
5,487,218
Bhatt et al
Jan. 30, 1996
5,557,844
Bhatt et al
Sep. 24, 1996
5,571,593
Arldt et al
Nov. 5, 1996
5,662,987
Mizumoto et al
Sep. 2, 1997
Printed circuit boards of the aforementioned type are particularly adapted for having one or more (usually several) electrical components, e.g., semiconductor chips, capacitors, resistors, etc., mounted on an external surface thereof and coupled to various, selected internal conductive planes within the board's dielectric substrate. As demands for increased levels of integration in semiconductor chips and other electrical components continue, parallel demands call for concurrent increased functional capabilities, e.g., increased circuit densities, in printed circuit boards adapted for use with such components. Such demands further emphasize the growing need for more closely spaced electrical components on the board's outer surfaces. For those boards possessing greater functional capabilities and therefore which use several through holes therein, it is highly desirable to position the electrical components directly over the holes to maximize board real estate while assuring a compact, miniaturized final board product.
Demands such as those above are particularly noteworthy when it is desirable to couple what are referred to as ball grid array (BGA) components directly onto the board's outer conductive layer(s). Such components include a plurality of highly dense conductors, e.g., solder ball elements, closely positioned in a fixed pattern on the component's undersurface. Such is also the case for directly mounted semiconductor chips (also known as direct chip attach or DCA components) wherein a dense pattern of several minute solder balls are arranged on the chip's compact and extremely small undersurface (that directly facing the underlying circuit board). To successfully accommodate such components, filling of the board's holes with conductive material (called “fill”) has been tried, with one or more examples defined in the above-identified issued Letters Patents. To accomplish such filling, however, it is typically necessary to utilize a mask or the like with pre-formed, e.g., drilled or punched, apertures therein which coincide with the desired hole pattern. Once provided in the necessary precise alignment, various filler materials have been attempted, including both electrically conductive and non-conductive. One example of such a filler is defined in U.S. Pat. No. 5,487,218, wherein the composition is an organic polymeric material with an optional particular filler added thereto to modify the thermal and/or electrical properties of the composition. One excellent reason for such modification is to approximately match the coefficients of thermal expansion of both board substrate material and contained filler.
In an approach somewhat different from using an apertured mask, a rupturable supporting member having fill thereon is used. Pressure is applied to the fill, resulting in rupturing of the support layer in the vicinities of the circuit board substrate's holes. Fill thus fills these holes and the support member and fill remainder are removed. This approach is defined in copending application Ser. No. 09/076,649, mentioned above.
It is believed that a new and unique method of making a printed circuit board having at least one (and possibly several) holes therein which can be filled in a more expeditious manner than heretofore described wherein performed masks or similar structures are used would represent a significant advancement in the art. It is further believed that a printed circuit board produced in accordance with such a method would also constitute a significant art advancement, as would a fill member usable during the method for providing expeditious hole fill.
OBJECTS AND SUMMARY OF THE INVENTION
It is, therefore, a primary object of the present invention to enhance the art of printed circuit board manufacture by providing a new and unique method of making such a board wherein filled holes are used.
A further object of the invention is to provide such a method which can be performed in an expeditious manner adaptable for mass production, thereby reducing the costs of making such a board end product.
It is an even further object of the invention to provide such a method which can be successfully accomplished without the need for a mask or the like having preformed openings therein which must necessarily align with the already formed board hole pattern.
It is yet a further object to provide a fill member that can be effectively used during circuit board manufacturing to assure precise and expeditious filling of the board's formed holes.
These and other objects are met by the present invention which defines a method for making a circuitized substrate (one prime example being a printed circuit board) which comprises providing a layer of dielectric material including fir

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of making a printed circuit board having filled holes... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of making a printed circuit board having filled holes..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of making a printed circuit board having filled holes... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3102413

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.