Method of making a multilayer circuit board having a window...

Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S253000, C156S307700, C029S830000, C029S831000, C029S832000, C029S852000, C361S718000, C361S719000, C361S761000

Reexamination Certificate

active

06200407

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a multilayer circuit board including a mounting area configured to facilitate heat dissipation from an electrical device. More particularly, the present invention relates to method for making a power substrate circuit board module, such as for use in a motor controller mounted on a circuit board configured to maximize heat dissipation from semiconductor switches.
BACKGROUND OF THE INVENTION
In general, multilayer circuit boards are utilized in high power applications such as motor controllers, inverters, converters, power supplies, or other control devices. Typically, these boards include high-power electrical devices such as resistors and semiconductors which perform the functions required by the associated applications. As a result, these electrical devices often generate a significant amount of heat, and require heat sinks or other thermal management systems to prevent the circuit boards and electrical devices from overheating.
Heat sinks are typically metal components relatively large in size and secured to circuit boards or associated electrical devices to enhance heat dissipation therefrom. In particular, heat sinks are attached to a thermally and electrically conductive portion of an electrical device. For example, heat sinks are frequently secured directly to the lead frame of the device with hardware such as brackets, bolts, or other mountings. This additional hardware is expensive and increases the assembly time for the circuit board. The heat sinks are often electrically isolated from the lead frame with a heat conducting, electrically insulating layer of film or other material which is placed between the electrical device and the heat sink. Such a layer is disadvantageous because installing the layer increases the assembly time for the circuit board. Furthermore, the integrity of the layer is very difficult to inspect.
Some electrical devices are packaged as surface mount devices which utilize a minimum amount of space on the circuit board. However, higher power surface mount devices must be mounted on or near large pads or sections of the metal layer on the circuit board to provide adequate heat dissipation. These large sections are disadvantageous because the space required by the large sections could otherwise be utilized by other electrical components or eliminated to reduce the footprint of the board. To reduce the size of these large sections, surface mount devices are often mounted on circuit boards made from ceramic, aluminum-based substances, or other materials which have a high thermal capacity. Drawbacks with these types of circuit boards include their expense and weight.
Particular applications require circuit board systems which are optimized for superior heat dissipation. For example, in the field of electronic motor controllers, it is commonplace to build a controller package as an assemblage of circuit boards including a power substrate module or other heat dissipating medium. Each of the circuit boards supports components and conducting paths for accomplishing various functions in the completed device. Such motor controllers generally include control logic circuitry and power components. The control logic circuitry, typically including programmable solid state circuits such as a programmable logic controller mounted on a motherboard or a separate logic circuit module, monitors operating parameters of the motor and generates control signals for driving the motor in accordance with a preset control routine and various operator inputs. The power components typically include diode rectifying circuits for receiving AC power from a source and converting it to DC power, and power transistors or similar solid state switching devices, such as insulated gate bi-polar transistors (IGBTs), for converting the DC power to controlled AC signals for driving the motor based upon the control signals produced by the control circuitry. The power components are mounted on the power substrate module.
In motor controllers of this type, the board, substrate, or foundation for the power substrate module is often manufactured from an expensive ceramic or aluminum-based (e.g., Al
2
O
3
) material having conductive lines and components on only a single side. This type of circuit board or substrate is expensive and increases the amount of space required for the motor controller package. In addition, due to the presence of different materials in such substrates, such as copper conductive layers, insulating layers, an aluminum-based heat dissipation layer and so on, high temperatures arising during operation of the power circuitry often lead to different amounts of thermal expansion between the various layers, resulting in considerable stress and even to failure of the substrate.
Another drawback of known power substrates arises from parasitic inductance between circuit components. Because power switching circuits are typically operated at a very high switching frequency, such inductance leads to voltage spikes, particularly in a turnoff phase of inverter operation. Such spikes are commonly reduced by the use of snubbing circuits, further adding to the cost and complexity of the substrate and supporting circuitry.
Thus, there is a need for a multilayer circuit board having an insulated mounting area for a surface mount device and a heat sink. There is also a need for a low cost multilayer circuit board optimized for heat dissipation and the reduction of parasitic inductance. There is further a need for a low cost circuit board which can be configured for use as a power substrate module in a motor controller.
SUMMARY OF THE INVENTION
The present invention relates to a method of making a multilayer circuit board. The method includes steps of providing a first circuit board layer, providing an insulative frame having at least one recess or aperture, placing at least one conductive member in the at least one recess or aperture in the insulative frame, providing an insulative medium on a first side of the insulative frame, providing a conductive layer on the insulating layer, and attaching the first circuit board layer to a second side of the insulative frame.
The method further relates to a method of fabricating a circuit board module having at least one exposed enhanced metal contact area. The method includes the steps of attaching a first circuit board layer to a frame containing at least one conductive member, and configuring the first circuit board layer so that the at least one conductive member is the at least one exposed contact area.
The present invention further relates to a method of making a multilayer circuit board having a plurality of mounting areas for receiving a plurality of electrical devices. The multilayer circuit board includes a first circuit board layer having at least one conductive side and an enhanced metal circuit board layer. The method includes steps of placing at least one conductive member in an insulative frame to form the enhanced metal circuit board layer, attaching the enhanced metal circuit board layer to the first circuit board layer to form the multilayer circuit board layer, and forming at least one recess in the multilayer circuit board, the plurality of mounting areas being at a bottom of the at least one recess on the at least one conductive member.
According to one exemplary aspect of the present invention, the multilayer circuit board is manufactured by attaching a conventional circuit board layer to an enhanced metal circuit board layer. Preferably, an adhesive or epoxy laminate is placed between the enhanced metal circuit board and the conventional circuit board and cured in a pressure and thermal process. The enhanced metal layer is exposed at windows or apertures in the conventional circuit board.
In another exemplary aspect of the present invention, the enhanced metal circuit board layer includes an enhanced metal layer, an insulating medium, and a thin conductive plane. The enhanced conductive layer is comprised of an insulating frame housing copper slugs. The insulating medium

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of making a multilayer circuit board having a window... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of making a multilayer circuit board having a window..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of making a multilayer circuit board having a window... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2434920

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.