Method of making a catheter

Metal working – Method of mechanical manufacture – Assembling or joining

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S531000, C148S563000

Reexamination Certificate

active

06598280

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to vascular catheters for use in medical procedures and, more particularly, to catheters having distal ends, tips or segments that can be remotely shaped, guided or steered. The present invention also relates to methods of making such catheters.
BACKGROUND OF THE INVENTION
Catheters have been in common use in medical practice for many years. They are often used, for example, to probe locations inside a body of a patient which are otherwise unreachable without surgery. A catheter is first inserted into a vein, artery, or other structure or region of the body of the patient. The catheter is then guided to the area of concern by further inserting it into the patient's body. As medical knowledge increases, more uses of catheters have been developed and these uses have become more complex so that the ability to accurately and selectively steer and control the positioning and shape of the distal portion of the catheter has become of extreme importance. For example, there is a need to use steerable catheters to supply or remove fluids or cells to or from various internal tissues of the patient and to apply or sense electrical signals to or from such tissues. Administered fluids may, for example, be in the form of a liquid suspension or gel containing a drug or other chemical used, for example, to treat or anesthetize the tissue.
In order to place the tip of the catheter in the correct location and position, it is often necessary or highly desirable to variously curve the catheter so that its distal portion will travel into the proper anatomical region or cavity as the catheter is inserted into the patient, or so that its distal portion conforms to the shape of the anatomical cavity so that the catheter's distal portion contacts the tissues of interest. After the distal portion has been so curved, it is also often desirable to rotate the catheter while maintaining the curvature of the distal region so that the intended portion of the catheter can then approach and/or contact the tissues of interest. It is also important that the catheter be able to make firm contact with the tissue of interest to facilitate reliable transmission or sensing of an electrical current to or from the tissue and/or reliable application or removal of fluid by the catheter.
A catheter which addresses some of the above problems is disclosed in U.S. Pat. No. 5,190,050, the entire disclosure of which is expressly incorporated by reference herein. In the catheter disclosed therein, the distal portion easily and reliably bends or twists in an angular orientation or curve that is selectively controllable. The distal end of the catheter is hollow and has at least two flat planar rigid juxtaposed shims mounted therein. The distal ends of the shims are attached to one another while the proximal end of at least one of the shims is attached to a pull cable and ultimately to the catheter handle. When a doctor or other user manipulates the catheter handle so that the catheter translates distally with respect to the handle, one of the shims follows the distal translation while the other shim retains its longitudinal distance from the handle causing the other shim and the associated distal portion of the catheter to longitudinally bend. Because of the planar shape of the shims and their rigidity, the bending of the distal portion of the catheter is always identical in direction, although varying in degree proportionally to the magnitude of the manipulation of the catheter handle, and is in a single plane of movement. The distal portion of the catheter can also optionally carry contact electrodes to transmit electrical pulses to or from tissue of the patient's body or can be made to pump fluids into or out of the body of the patient. Although the catheter disclosed in U.S. Pat. No. 5,190,050 is reliable, completely functional and useful for many applications, it is not able to assume a shape having a curvature in more than one plane.
There are certain internal passages or chambers in the body which are not easily accessible to a catheter that can bend in only one plane. In the heart, for example, when it is desired to apply electrical pulses to, detect electrical signals from, or to introduce or extract fluids to or from the mitral or tricuspid valve annulus, the tip of a catheter must be curved in two planes in order to properly contact the desired tissue. When the steerable catheter disclosed in U.S. Pat. No. 5,190,050 is used for this particular application, a doctor typically introduces the tip of the catheter into the heart's atrium and adjusts the catheter's handle to cause the tip to deflect in its single plane of deflection. The distal portion of the catheter's tip is then manipulated, either by rotation, by further insertion, or by a combination of both so that it contacts and is wedged against certain tissues and/or tissue walls within the heart. As a result, a proximal portion of the tip of the catheter, which does not contain the sandwiched juxtaposed rigid shims, is caused through such contact or abutment with tissue walls to assume a curve or bend in a plane that is different from the deflection plane of the distal end of the catheter's tip. As a result of this double twist in the catheter's tip, the catheter can than be further inserted so that it enters the mitral or tricuspid valve annulus. The second twist in the tip of the catheter, however, is not fixed or locked, is not readily controllable or selectively attainable, and is not pre-programmed into the catheter. As a consequence, the catheter tip manipulations needed to attain the desired catheter tip shape requires substantial experience and skill.
The multiform twistable tip deflectable catheter disclosed in U.S. Pat. No. 5,358,479, the entire disclosure of which is expressly incorporated by reference herein, employs a single shim with at least one transverse or lateral twist which enables the tip of the catheter tube to assume a lockable pre-programmed curvature in more than one plane. Although this catheter is also reliable, completely functional and useful for many applications, its twisted shim design places some limit on the particular shapes that the catheter tip can assume.
SUMMARY OF THE INVENTION
The conformable catheter of the present invention broadly comprises a catheter handle, an elongated catheter tube, and the distal tip portion of the catheter tube, which is capable of assuming a desired pre-programmed shape. The catheter tube, which is preferably a hollow, rigid, reinforced tube, is sufficiently long to be inserted into a patient to reach a body cavity of interest, such as the heart.
The catheter's tip portion is preferably made of a softer material so that it is more flexible than the catheter tube. A plurality of electrical contact plates or bands are mounted onto or around the outer surface of the catheter's tip portion. The electrical contact plate are connected to wires which pass through the entire length of the catheter tube and through the handle where they may be separately connected to a plug connectable to signal sensors or to an electrical power source. A wire member is disposed within the core of the catheter's tip portion, preferably extends through its entire length. The wire member is formed of a material that will assume a pre-programmed shape after pre-shaping and heat treatment and subsequent heating, such as a shape-memory binary nickel-titanium alloy (about 49.0 to about 50.7% titanium) or ternary nickel-titanium alloys containing other elements, such as chromium. Suitable shape-memory alloys include those commercially known as “nickel-titanium”, “titanium-nickel”, “Tee-nne”, “Memorite”, “Nitinol”, “Tinel” and “Flexon”. The wire member is preferably electrically connected by one or more wires extending through the catheter tube and the handle to another plug which is connectable to an electrical power supply and optionally a microprocessor.
A plurality of buttons mounted to the handle are employed by the use

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of making a catheter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of making a catheter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of making a catheter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3019687

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.