Method of locating defective sockets in a light strand

Electricity: measuring and testing – Electric lamp or discharge device – Electric lamp

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S529000, C324S072500, C315S18500S

Reexamination Certificate

active

06556018

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATIONS
Not Applicable
STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT
Not Applicable
BACKGROUND OF THE INVENTION
The present invention relates in general to circuit testing, and in particular to a method for locating a defective bulb or bulb socket in a strand of electric lights such as decorative Christmas and ornamental commercial lights connected in series and typically circuit sets containing 50 lights on one circuit. If one bulb is missing or does not make connection the 50 lights in its circuit will go out. Electro magnetic field detection tests (E.M.F.D.T.) are performed at two spaced non-illuminated bulb or bulb socket locations and are compared to determine alike or unlike test results. If no bulb or bulb socket defect resides between the two locations the respective test results will be identical. If the E.M.F.D.T.'s are unlike or opposite, meaning one test exhibits an electro magnetic field and the other test does not exhibit an electro magnetic field then a defective bulb or socket does exist between the two tests exhibiting opposite test results. The defective bulb or bulb socket is thereafter precisely identified by process of elimination until the non-illuminated bulb or socket testing positive (having a electro magnetic field) is directly adjacent to the non-illuminated bulb/socket testing negative (no electro magnetic field) is located.
It is not uncommon that at least one strand of decorative lights such.as those used during the Christmas season time to decorate Christmas trees, houses, shrubbery, and the like suffers from a defective bulb and/or bulb socket that causes outages of other bulbs where all of the sockets are wired in series and typically circuit sets containing 50-lights on one circuit. Consequently, if one bulb is missing, broken or does not make contact then the 49 other lights on its circuit will also go out, or if the strand is only a 50-light-strand, which is common, then the entire strand of lights will be out as a result of one defective bulb. Because of this electrical relationship of the sockets, it many times is extremely difficult, and usually very time-consuming, to find the exact location of a defective bulb or bulb socket. This is especially true where an affected strand is one of many used to produce specialty-type lighting collections such as the popular icicle-type lighting used for roof eave decoration to simulate icicles hanging from the roof's edge, and the “net” type lights used for decorating outdoor shrubs, hedges, etc. Depending upon the patience as well as the economic status of a user, it is not uncommon for entire lighting sets to be discarded and replaced with new and freshly packed bulbs for immediate and easy application. However, even such new strands can be defective or easily damaged during their installation.
In view of the above-exemplified untoward frustration that can occur while working with strand collections of lights, it is apparent that a need is present for efficient and easily-achieved methodology for testing inoperative strand portions and thereafter rapidly finding the exact location where a repair or replacement is needed. Accordingly, a primary object of the present invention is to provide a method of locating a defective bulb or bulb socket in a strand thereof by comparing electro magnetic field detection tests (E.M.F.D.T.) of spaced non-illuminated bulb sockets until a test change between two non-illuminated bulb/sockets occurs. Thereafter performing E.M.F.D.T.(s) at each socket between the two non-illuminated bulb/sockets exhibiting opposite test results until the non-illuminated bulb or socket testing positive (having an electro magnetic field) is directly adjacent to the non-illuminated bulb/socket testing negative (having no electro magnetic field) is located, this is the defective bulb/socket.
Another object of the present invention is to provide an easily usable test and repair kit for locating and correcting defective bulb or bulb sockets.
This and other objects of the present invention will become apparent throughout the description thereof which now follows.
BRIEF SUMMARY OF THE INVENTION
The present invention is a method of locating a defective bulb or bulb socket in a strand of electrically powered lights each within a respective bulb socket all connected in series and typically circuit sets containing 50 bulbs on one circuit wherein the strand has a power connector interface plug for connection to an electric power source. The method first includes connecting the power connector interface plug to an electric power source for providing power availability to the light strand. The connector interface, typically a standard-electrical plug, is connected to a wall socket or extension cord, the connector interface wires are then tested to determine the presence of an electro magnetic field, both for subsequent socket testing as described later and for checking operability of a fuse situated in the connector interface plug in that, if no magnetic field is present, an operator immediately knows that the fuse must be replaced (assuming the power source is operative and active). Next, an electro magnetic field detector is used to test the first non-illuminated light closest to the connector interface (referred to as light
1
), this is called an Electro Magnetic Field Detection Test (E.M.F.D.T.) The operator reads the result of this first E.M.F.D.T. If the detector senses an electro magnetic field, depending upon the particular probe detector used, the tip of the detector will either glow and/or emit an audible beeping sound, this is called a positive or “Hot” test. Next, the electro magnetic field detector is successively traversed along non-illuminated sockets
2
,
3
, etc., and continuing downwards from the first E.M.F.D.T. until a non-illuminated socket is located that exhibits a E.M.F.D.T. opposite to that of the previous E.M.F.D.T. When this occurs, the non-illuminated bulb and/or socket that shows a positive test (having an electro magnetic field) and is directly adjacent to the non-illuminated bulb/socket showing a negative test (having no electro magnetic field) is recognized as the defective bulb or socket. If only the bulb is defective, its replacement should result in illumination of all bulbs on that circuit. If such illumination does not occur after replacement and it is determined that the socket is not defective, the above-described testing regimen is repeated. The second testing procedure begins from the newly replaced (but still non-illuminated) bulb continuing to the, next non-illuminated socket down the light strand until the non-illuminated bulb/socket is located that exhibits an E.M.F.D.T. change from that of the newly replaced non-illuminated bulb. Once again, the non-illuminated socket that shows a positive test (having an electro magnetic field) that is directly adjacent to the non-illuminated socket showing a negative test (having no electro magnetic field) is recognized as the defective bulb, or socket. Repeating the above steps as necessary as indicated by non-illumination of bulbs will quickly locate repair and/or replacement sites within a strand and permit the operator to immediately address needed correction.


REFERENCES:
patent: 3919631 (1975-11-01), Brown
patent: 4006409 (1977-02-01), Adams
patent: 4533864 (1985-08-01), Austin
patent: 4724382 (1988-02-01), Schauerte
patent: 5103165 (1992-04-01), Sirattz
patent: 5227984 (1993-07-01), Meldrum et al.
patent: 5539317 (1996-07-01), Janning
patent: 6084357 (2000-07-01), Janning
patent: 6259257 (2001-07-01), Hawkins, Sr.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of locating defective sockets in a light strand does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of locating defective sockets in a light strand, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of locating defective sockets in a light strand will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3004556

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.