Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Implantable prosthesis – Ligament or tendon
Reexamination Certificate
2002-04-15
2003-03-25
Milano, Michael J. (Department: 3731)
Prosthesis (i.e., artificial body members), parts thereof, or ai
Implantable prosthesis
Ligament or tendon
C128S898000, C606S075000, C606S096000, C623S013140
Reexamination Certificate
active
06537319
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to reconstruction of the anterior cruciate ligament (ACL), and, more specifically, to surgical graft fixation using semitendinosus and gracilis tendon autografts.
2. Description of the Related Art
When a ligament or tendon becomes detached from associated bone, surgery usually is required to re-secure the ligament or tendon. Often, a substitute ligament, or graft, is attached to the bone to facilitate re-growth and permanent attachment. Various methods of ligament graft attachment are known, including staples, suture over buttons, and interference screw fixation.
Various problems exist with the known fixation methods. Staples and suture buttons are disadvantageous because they often do not provide fixation sufficient to withstand the normal tensile loads. With suture button fixation, for example, a strand of suture couples the button and the substitute ligament. This strand becomes the “weakest link in the chain,” and if the strand breaks, the ligament detaches.
A stronger graft attachment can be obtained by interference screw fixation, whereby an interference screw is used to wedge a graft bone block to the wall of a graft tunnel. See, e.g., U.S. Pat. Nos. 5,211,647, and 5,603,716, incorporated herein by reference.
Although interference screw attachment is more secure than using staples or suture buttons, it is sometimes neither possible nor desirable to provide such fixation, particularly in the femoral tunnel. In revision situations, for example, where a previous reconstruction has been performed, placing a second femoral tunnel placed close to the previous tunnel may not be indicated.
In other cases, a semitendinosus graft must be used because the previous reconstruction used the mid third patellar tendon. Although a bone-semitendinosus graft-bone construct may be prepared using a workstation as disclosed in U.S. Pat. No. 5,397,357, such a procedure is time consuming, and may be undesirable for other reasons.
A fixation technique which provides strong attachment of a semitendinosus graft in the femoral tunnel, using a transverse implant, is disclosed in U.S. Pat. No. 5,601,562, of common assignment with the present application, and incorporated herein by reference. The transverse implant is inserted through a loop in a tendon graft. A threaded portion of the implant screws into the bone as the implant is advanced with rotation into the repair site. The technique is disadvantageous, however, because the graft can become wrapped around the implant as it is rotated. An improved bone implant is the subject of a co-pending U.S. patent application, attorney docket no. P/1493-155.
In addition, the prior art technique noted above requires a forked insertion tool, and a large femoral tunnel is needed to accommodate the forked insertion tool. As a result, the large femoral tunnel undesirably allows the graft to slide laterally, or “wipe”, back and forth, along the fixation implant. Moreover, the diameter of the implant necessarily is limited by the size of the opening in the forked insertion tool.
As a further disadvantage, the technique also requires the extra steps of forming and wedging a bone plug into the femoral tunnel after insertion of the ligament. Moreover, the technique does not accommodate a closed-loop graft construct, since the graft must have a free end in order to be inserted with the forked insertion tool. Further, the technique may not be indicated in revision procedures.
Various endoscopic techniques and instruments relating to graft fixation are known in the prior art and can be used in the practice of the present invention. U.S. Pat. No. 5,320,636 to Schmieding discusses an endoscopic drill guide for graft tunnel location. U.S. Pat. No. Des. 378,780 illustrates a cannulated headed reamer as can be used in femoral socket formation. U.S. Pat. Nos. 5,269,786 and 5,350,383 disclose drill guides for location of bone tunnels.
The need exists for fixation techniques that utilize narrower femoral/tibial tunnels, to prevent wiping, and that do not require the insertion of bone plugs. Also, the need exists for graft ligament loading techniques that can accommodate closed-looped grafts, that do not require specialized insertion tools to load the graft into the knee, and that can be indicated in certain revision procedures.
SUMMARY OF THE INVENTION
The present invention overcomes the problems of the prior art and fulfills needs such as those noted above by providing a surgical method for loading tendon grafts into a joint and fixating the grafts using a transverse, intraosseous implant. The inventive technique advantageously uses narrow tibial and femoral tunnels, and eliminates the use of sutures, tapes, or extra-osseous metal fixation devices. The procedure also is indicated for revisions that would otherwise be jeopardized by secondary femoral tunnel creation. In addition, the technique can be implemented using a transverse implant that is advanced by impaction into the bone.
As applied in the knee, the method includes the use of standard techniques to drill a longitudinal tunnel in the tibia. Subsequently, a femoral socket is formed, preferably in the lateral femoral condyle. According to the present invention, forming the socket is preferred to forming a tunnel through the lateral femoral cortex. Advantageously, the diameters of the tibial tunnel and femoral socket are made just large enough to accommodate the graft in a snug fit.
A tunnel hook, mounted on a cross-pin drill guide, is inserted through the tibial tunnel and into the femoral socket. A drill pin directed by the drill guide is drilled through the femur to intersect the femoral socket. The drill pin passes through the capture slot of the tunnel hook.
A hole then is formed in the femur, preferably using a cannulated drill placed over the guide pin, to accommodate a threaded section of the transtibial implant. A channel is formed in the lateral femoral cortex to accommodate the remainder of the implant, preferably using a dilator placed over the guide pin.
Next, a flexible strand, preferably a wire formed of nitinol, is attached to the guide pin and pulled through the femur. Equal lengths of the strand protrude from the medial and lateral sides of the femoral shaft, and are secured to prevent accidental pull-out. The tunnel hook is withdrawn, the strand being captured in the slot of the hook.
The hook is retracted completely, through the femoral socket and out of the tibial tunnel, such that a loop of the flexible strand protrudes from the entrance to the tunnel. Free ends of the strand remain exposed on either side of the femoral shaft.
The graft is passed through the diverted loop of the flexible strand. The loop is retracted into the femoral socket by pulling evenly on the medial and lateral ends of the strand. As a result, the graft is drawn into the socket.
The cannulated implant is placed over the wire and driven into the femur. The implant preferably is formed with back-biting threads. Accordingly, the implant easily can be impact driven into the repair site, and yet can be removed if necessary by rotation. The cannulated implant passes over the strand and under the tendon, thus securing the graft in the femoral socket.
Tibial fixation of the graft can be performed by various known methods, including interference screw fixation, which provides the most secure post-operative result; distal fixation with a cancellous screw using a post and washer technique; and a belt buckle staple technique utilizing a pair of ligament staples.
An alternative method of tendon loading is also provided for a closed-loop graft reconstruction. According to the alternative method, a flexible line is joined to one end of the strand. A strand/line loop is formed so as to protrude from the entrance to the tibial tunnel and present the junction between the strand and the line. The strand and the line are dejoined, opening the strand/line loop to accept the graft. The strand and line are rejoined so as to capture the graft, and the procedure conti
Arthrex Inc.
Dickstein , Shapiro, Morin & Oshinsky, LLP
Milano Michael J.
Webb Sarah
LandOfFree
Method of loading tendons into the knee does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of loading tendons into the knee, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of loading tendons into the knee will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3049854