Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
1999-07-15
2001-02-20
Casler, Brian L. (Department: 3737)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
Reexamination Certificate
active
06192262
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention belongs to the field of physics and medicine or, more precisely, to methods and systems or characterizing and investigating the functional state of living organisms and the functional dynamics of the physiological processes taking place during the living organism's vital activity, and using information obtained therefrom in a multimodal approach.
Living organism functional mapping reveals the earliest signs of pathologies on the basis of the integral picture of the organism's functioning. This opens up the possibility of avoiding radical methods of treatment which become necessary when such pathologies are revealed at a later stage of their development. That is why the methods related to the living organism's early functional diagnostics are very promising for the population screening and for development of preventive medicine.
For a long time, functional diagnostics of a living organism's state was performed only with the use of various tests which determined the quality and/or the reaction rates of the organism's physiological systems. Such tests made it possible to only estimate the functional state of the living organism's system when the organism was involved in some purposeful activity. Since the overall picture of the organism functioning was not investigated, such measurements did not give rise to the possibility of performing early diagnosis of pathology.
Only lately, when modern radio physics (electromagnetic theory) methods were applied to biomedical research, the possibility appeared of recording a complex picture of the spatial-temporal dynamics of a living organism's physical fields and radiations, yielding important information on the state of the organism's various regulative systems and organs in the course of natural vital activity.
The human body or organism is a dynamic self-regulative system.
Its stability (homeostasis) is provided by the continuous functioning of different physiological systems. Variations in the organism's physiological parameters result in changes of the biological tissue's physical parameters, such as, for example, the temperature, dielectric permeability, magnetic susceptibility, electric impedance and potentials, currents, etc. The organism's functional dynamics are reflected in the above mentioned dynamic distributions of its physical parameters. Information on the functional dynamics are revealed in the real time scale by the dynamics of the organism's physical fields and radiations: infrared (IR), microwave, acoustical, optical radiations, electric and magnetic fields. Under these conditions, external fields and radiations become parametrically modulated, with those of natural origin such as geomagnetic, electric, light, etc., being first observed.
Different methods of investigating and diagnosing a living organism's state which employ recording the above mentioned physical parameters are known.
For example, to determine the biological tissues' temperature, the tissue's own electromagnetic thermal radiations, which are most intensive at the middle IR-wavelength range, are recorded. Infrared dynamic thermal mapping methods, as described in Guljaev, Yu V, Godik, E. E. et al., “on the possibilities of the functional diagnostics of the biological subjects via their temporal dynamics of the infrared images,” USSR Academy Nauk Proceedings/Biophysics, 1984, vol. 277, pp. 1486-1491, are based on such measurements. This method permits both measuring the tissue temperature with accuracy better than 0.1 degree and investigating the spatial-temporal distribution of blood microcirculation at the near surface tissues of the living organism. To accomplish this, temporal changes in the spatial distribution of IR-thermal radiation intensity of the living organism tissues are recorded, which provides the spatial-temporal microcirculation dynamics in these tissues. This method is used for investigation of both the spontaneous functional dynamics and functional dynamics initiated by the reactions of the physiological systems to different functional tests: reflective and humoral ones. The data thus obtained are represented in the form of the temporal sequences of the thermal images and/or the spatial-temporal cuts. Pain reactions, hyper- and hypo- ventilation and the effects of pharmaceutical treatments are able to be visualized under these conditions. In addition, this method reveals regions with various disturbances in the regulative mechanisms, and differential diagnostics of such disturbances can be performed. This method also permits estimating the state of the internal organs via the study of the spatial-temporal dynamics of the IR-radiation intensity recorded at the areas where the dermatomers reflectively connected with the corresponding organs are located.
However, the main disadvantage of the above described method is that it does not permit investigating the functional interconnection between various physiological processes which occur in a living organism under investigation. IR-thermal radiation provides information only about the dynamics of slow microcirculation, since the depth examined does not exceed 100 um. At the same time, the process of the thermal projection to the skin surface of the deeper layers of the blood flow network takes several seconds. For this reason, the above method does not permit investigating the fast blood flow dynamics connected, for example, with cardio and/or respiratory processes. The application of this method for the description of the living organism's functional state is restricted by information contained in the slow temporal dynamics of the skin surface temperature. In addition, this method fails to obtain the necessary set of additional physical parameters characterizing the functioning of the living organisms' investigated regions.
Another method of living organism functional diagnostics is a multichannel measurement of physiological parameters. A whole family of multichannel polygraphy is based on such approach, as described in Hasset, J,“Introduction into psycho-physiology,” Moscow, Mir, 1981 (translated into Russian), for example. According to this method signals or information derived simultaneously from several channels are measured. The most complete set of information is represented by simultaneous measurements of the electroencephalogram, electrocardiogram, arterial pressure, skin electric resistance and/or skin galvanic reaction, skin temperature, plethysmogram and electromyogram, as described in, for example, Yoshihiro, Ito, “Autogenic training and treating apparatus,” U.S. Pat. No. 4,573,472, March 1984. On the basis of the temporal dynamics of the recorded parameters, the living organism's functional state is judged. Recording of several different physiological signals gives a more accurate description of the organism's state.
At the same time, the multichannel polygraphy method reflects the temporal dynamics of the above parameters only at several discrete points of the organism and neither permits determination of the spatial distribution of the physiological reactions, i.e., the spatial portrait of the living organism's functioning, nor the investigation of the functional dynamics of the whole-organism's connectivity of the physiological systems.
A method of functional diagnostics based on multichannel mapping of the spatial-temporal distributions of the physical field tensions and radiation intensities of the human body (living organism) is also known, and described in Godik, E. E., Guljaev, Yu V. Human and animal physical fields, “V mire nauki” (Russian version of Scientific American), 1990, no. 5, pp. 74-83. This method is based on the following approach to determine the functional state of a living organism.
The human body or living organism, as a self-regulative system, is functionally inhomogeneous and non-stationary. For that reason its functioning and its multilevel regulative mechanisms are described by a hierarchy of rate
Casler Brian L.
Cohen Jerry
DOBI Medical Systems, LLC
Erlich Jacob N.
Perkins Smith & Cohen LLP
LandOfFree
Method of living organism multimodal functional mapping does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of living organism multimodal functional mapping, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of living organism multimodal functional mapping will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2586628