Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai
Reexamination Certificate
1999-02-23
2002-12-03
Beckerleg, A. M. S. (Department: 1632)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Carbohydrate doai
C435S320100, C435S325000, C435S455000, C435S069100, C424S188100, C536S023500
Reexamination Certificate
active
06489306
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
A method of preventing, or decreasing the severity of symptoms associated with a respiratory viral infection in a mammal is provided. Also provided is a method of gene therapy capable of causing expression of IFN&ggr; in respiratory cells for prevention of viral infection.
2. Description of Related Art
Respiratory viruses such as respiratory syncytial virus (RSV), the parainfluenza viruses (PIV), and the influe nza viruses cause severe lower respiratory tract diseases in infants and children throughout the world. It is also an important cause of disease in adults and is responsible for a significant amount of excess morbidity and mortality in the elderly. It also can be devastating in immunosuppressed populations (Murray et al., 1997; Pullen et al. 1982; Hall et al. 1984).
Experimental live attenuated vaccines for each of these viruses are being developed for intranasal administration in the first weeks or months of life, but none are currently FDA approved. A variety of RSV, PIV-3, and influenza virus vaccine strains have been developed by classical biological methods, evaluated extensively in preclinical and clinical studies, and shown to be attenuated and genetically stable. However, a major remaining obstacle to successful immunization of infants against respiratory virus associated disease may be the relatively poor immune response of very young infants to primary virus infection. (Crowe J. E. Jr Vaccine 1998 Aug.-Sep.;16(14-15):1423-32 Immune responses of infants to infection with respiratory viruses and live attenuated respiratory virus candidate vaccines.)
Moreover, even if one or more vaccines are approved, they may not be suitable for some populations vulnerable to RSV (e.g. very young infants and the immunosuppressed). Ribavirin and immunoglobulin preparations with high titers of RSV-specific neutralizing antibodies are currently approved for use to treat and prevent RSV infection. However, neither of these methods are cost-effective or simple to administer. New agents are needed to reduce the impact of RSV. (Wyde P. R. Antiviral Res 1998 Aug.;39(2):63-79 Respiratory syncytial virus (RSV) disease and prospects for its control.)
Data obtained from the National Respiratory and Enteric Virus Surveillance System demonstrates the seasonal pattern of RSV infection, with peak rates of 30-40% occurring at the beginning of each year (Murray et al., 1997; Pullen et al. 1982; Hall et al., 1984). RSV infection is commonly associated with interstitial lung diseases, such as bronchiolitis and asthma. It is a major risk factor for a number of other disease conditions, such as immunodeficiency, cardiac arrhythmia, congenital heart disease, and unusual atrial tachycardia (Sly, et al., 1989; Robinson et al. 1997;
Armstrong et al. 1993; Fixler, 1996; Lemen, 1995; Persson, 1997; Shelhamer et al. 1995).
Emerging evidence points to RSV as a significant pathogen in adults and the elderly (Murray et al., 1997). In the USA alone, RSV causes about 4500 deaths per year, about 95,000 hospitalizations, and an estimated four million cases of respiratory tract infections annually (McIntosh et al., 1990; Hall, et al. 1991). RSV is also a major public health concern globally with an estimated five million deaths annually due to RSV infections (Warren, 1986; Walsh, 1988).
Although the severity of the disease decreases with repeated infection, previous RSV infection renders no or limited immunity to subsequent RSV infection (Hal, 1991).
Despite the above serious implications of RSV infection, the progress in the knowledge of the viral genes and gene products (Collins, 1991; Collins et al., 1996; Barik, 1992), an effective vaccine, or treatment against RSV, is yet to be developed.
Additionally, previous attempts to develop a vaccine using formalin inactivated RSV not only failed but exacerbated the disease when subsequent RSV infection occurred (Chanock, et al. 1992; Hall, 1994). The development of an attenuated, immunogenic and genetically stable live RSV vaccine has not been successful. An effective vaccine or treatment for RSV would be highly desirable.
Additionally, human nasal, airway, and lung epithelial cells constitute a major target for respiratory infections. Viral infection alters the expression of genes encoding a number of cytokines, chemokines and inflammatory mediators (Sabauste, et al. 1995; Choi, et al. 1992; Becker et al. 1993). However, the molecular mechanism underlying RSV infection and receptors for RSV remain to be elucidated.
The molecular pathology of RSV infection-induced inflammation, which is poorly understood, has been investigated. The alteration of gene expression for various cytokines, chemokines, and inflammatory mediators was examined using RT-PCR and ELISA assays following RSV infection of HEp-2 and BEAS-2B cells. The expression of the inflammatory cytokines IL-6, IL-8, IL-10 and IL-1&bgr; increased with the time of exposure to RSV. Both cell lines constitutively expressed IL-13 MRNA.
The expression of the chemokine, RANTES, and the broncho-constrictor, endothelin-1, were also increased after viral infection in both cell lines. The expression of other inflammatory mediators, such as inducible nitric oxide synthase (iNOS) and mucin-1 (MUC1) encoding episialin, a mucin like polypeptide, also increased after viral infection. Only the BEAS-2B cell line expressed TNF-&agr; following viral infection. These results demonstrate that RSV infection triggers the production in these epithelial cells of several of the pro-inflammatory cytokines and mediators, responsible for the airway inflammation in both allergic and non-allergic individuals.
The secretion of cytokines by airway epithelial cells can either initiate local inflammatory responses or amplify an inflammatory event that was previously initiated by activated macrophages, eosinophils, mast cells or lymphocytes (Shelhamer et al., 1995; Holtzman, et al. 1991; Churchill, et al. 1989; Marini, et al. 1992; Churchill, et al. 1992; Kwon, et al. 1994; Sousa, et al. 1994; Cromwell, et al. 1992; Jin, et al. 1997). The epithelial cell-mediated inflammation by involve a number of cytokines and chemokines including IL-1&bgr;, IL-6, IL-8, IL-11, IFN-&ggr;, TNF-&agr;, GM-CSF, GRO-&agr;, PLA-2, C3, inducible nitric oxide synthase (iNOS), MCP-1, endothelin-1 (ET-1), mucin, elastase-specific inhibitors, and secretory leukocyte proteinase inhibitor.
Available evidence suggests that the primary target of respiratory viruses are epithelial cells. Once infected, epithelial cells respond to the virus by increasing the production of a number of cytokines, which contribute to airway inflammation (Sabauste, et al. 1995; Choi, et al. 1992; Becker et al. 1993; Merolla, et al. 1995; Noah, et al. 1993; Garofalo et al. 1996). The rhinovirus infection of a transformed HBE cell line, BEAS-2B, caused the release of the granulocyte macrophage colony stimulating factor (GM-CSF), IL-6, and IL-8 (Sabauste et al. 1995). The influenza virus infection of primary cultures of human bronchial epithelial (HBE) cells induced the expression of IL-8 (Choi, et al. 1992). Also, in response to RSV infection, nasal epithelial cells and BEAS-2B cells generated IL-8 (Becker et al., 1993; Merolla et al., 1995; Noah, et al., 1993; Garofalo et al. 1996). Although the cytokine-mediated inflammatory basis of respiratory infections has been investigated, the molecular mechanisms underlying such infections remain poorly understood.
Studies in children suggest that RSV infection induce a T helper type 2-like response (Roman, et al. 1997). Also, formalin inactivated RSV induces a Th2-like response and IgE antibody production in mice (Connors, et al. 1992; Connors, et al. 1994; Graham, et al. 1993). Th2-like cells are mediated via cytokines such as IL-4, IL-5, IL-10, and IL-13 (Mosmann, et al. 1989) which are either important for IgE production or are involved in the recruitment and activation of inflammatory cells. IL-4 and IFN-&ggr; reciprocally regulate IgE production, and RSV infection can augment IgE mediated inflammation
Behera Aruna K.
Kumar Mukesh
Matsuse Hiroto
Mohapatra Shyam S.
Beckerleg A. M. S.
Kohn & Associates PLLC
University of South Florida
LandOfFree
Method of intranasal gene transfer for protection against... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of intranasal gene transfer for protection against..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of intranasal gene transfer for protection against... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2982306