Refrigeration – Vortex tube – e.g. – ranque
Patent
1985-11-21
1987-03-03
Capossela, Ronald C.
Refrigeration
Vortex tube, e.g., ranque
62402, F25B 902
Patent
active
046465243
DESCRIPTION:
BRIEF SUMMARY
TECHNICAL FIELD
This invention concerns a method of intensifying heat in a reversed Rankine cycle, in which a vortex tube is incorporated in a coolant circuit between a compressor and a condenser in the reversed Rankine cycle, as well as a reversed Rankine cycle apparatus for conducting the same.
BACKGROUND ART
In the reversed Rankine cycle such as a heat pump, the heat calorie discharged from a condenser is generally determined by the heat calorie intaken to an evaporator and the amount of work of an compressor. Accordingly, conventional reversed Rankine cycle apparatus involves a problem in that if the heat calorie intaken to the evaporator is constant, a great amount of work has to be done by the compressor in order to increase the enthalpy in the higher temperature region and, in addition, no great coefficient of performance can be attained since the cycle takes a vertically extended configuration in the p.i diagram where the coolant is deeply brought into a super-cooling region. Furthermore, if the heat-endurance of the compressor is restricted, there is an inevitable limit for increasing the amount of work in order to increase the enthalpy.
While on the other hand, there has been known a vortex tube as a device of converting a gas supplied under a high pressure into a vortex stream at a high velocity, separating the same into higher and lower temperature components through energy separation and discharging them from two opposing exits. However, the vortex tube has hitherto been used for utilizing the separated gas on the lower temperature side while discharging the higher temperature component to the atmosphere, and there have been known no method and apparatus for intensifying heat by combining them to the reversed Rankine cycle as far as the present inventors know.
A primary object of this invention is to improve the performance of heat pumps or refrigerators or coolers by separating the superheated vapors of coolant rendered to high pressure and high temperature by the compressor in the reversed Rankine cycle into higher and lower temperature components through energy separation in the vortex tube thereby further raising the temperature of most part of the superheated vapors of the coolant.
Another object of this invention is to further increase the enthalpy, as well as protect the compressor in the reversed Rankine cycle by causing the heat generated from the compressor to be absorbed into the vapors of coolant separated by the vortex tube to the lower temperature side.
DISCLOSURE OF INVENTION
The present inventors have taken notice of the fact that most part of a gas supplied under a high pressure to a vortex tube can be taken out at a temperature much higher than that at the supply inlet by discharging only the slight portion of the gas at a high pressure from the exit on the lower temperature side, while discharging the remaining portion from the exit on the higher temperature side, and have accomplished this invention based on the findings that the performance of a heat pump or refrigerator (cooler) can be improved by combining the vortex tube with the reversed Rankine cycle.
The feature of this invention resides in introducing superheated vapors of coolant at a high pressure into a vortex tube while connecting a coolant circuit on the discharging side of a compressor in the reversed Rankine cycle to the supply inlet for pressurized gas of the vortex tube, discharging from 70% to 100% and, preferably, from 95% to 98% of the introduced superheated vapors of coolant from the exit on the higher temperature side of the vortex tubes while discharging the remaining portion from the exit on the lower temperature side thereof, thereby separating to take out from at least 70% to less than 100% and, preferably, from 95% to 98% of the superheated vapors of coolant at a higher temperature and taking out the remaining portion at a lower temperature, condensating the superheated vapors of coolant separated on the higher temperature side by the condenser in the reversed Rankine cycle while recycling
REFERENCES:
patent: 2920457 (1960-01-01), Bartlett, Jr.
patent: 4302949 (1981-12-01), Longhetto
Araki Nobuyuki
Kawashima Junzo
Capossela Ronald C.
Jantec Co., Ltd.
LandOfFree
Method of intensifying heat in reversed Rankine cycle and revers does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of intensifying heat in reversed Rankine cycle and revers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of intensifying heat in reversed Rankine cycle and revers will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1009923