Method of inspecting meat for bone content using dual energy...

X-ray or gamma ray systems or devices – Specific application – Absorption

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C378S057000, C378S098900

Reexamination Certificate

active

06597759

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention generally relates to the non-destructive analysis of products and more particularly to using dual energy x-ray attenuation measurements to determine the composition of bone in meat products.
It is often important to determine the composition of the product for purposes of quality control. Particularly in the food industry, it is important to locate contaminants or identify certain substances the quantity of which must be controlled. Moreover, it is desired to test the product without destroying it or altering its make-up in any way.
As one example, it is often important to determine the fat and bone content of cut or processed meat, since the price of meat is based largely on the amount of lean meat being sold. Also, processed meat may contain bone fragments or other objects from the sawing and boning process that could injure a consumer or otherwise substantially reduce the value of the meat.
Techniques of chemical analysis of industrial products, such as for determining the amount of fat in meat, are well known, but such laboratory techniques are time consuming and costly. Moreover, these techniques typically require that the product be physically or chemically broken down, consequently, only selected samples of the product can be analyzed, rather than each product. This diminishes the accuracy of the analysis since the quantities of substances and contaminants can vary from one product to another.
One non-destructive method of analyzing products uses x-ray or gamma radiation. For example, U.S. Pat. Nos. 2,992,332 and 4,168,431 describe systems detecting attenuation of x-rays passing through the product. Using such methods, each product rather than just samples, can be analyzed. Unfortunately, accurate x-ray attenuation determinations of compositions of matter require all other variable, particularly the density and total thickness of the sample to be precisely controlled.
U.S. Pat. No. 4,504,963 suggests that the need for careful product sample preparation (to ensure constant density and thickness) can avoided by using at least three separate x-ray beams, each operating at a different energy level. According to the application, the multiple x-ray beams each provide a different attenuation value and thus provide a “signature” that may be empirically related to a particular composition, regardless of slight density or thickness variations in the product. This approach, if feasible, thus avoids the problems inherent in preparing uniform product samples for testing. Nevertheless, it requires both multiple measurements of the product at various densities and thicknesses so as to deduce the signature ranges.
There is a need for a simple method for rapidly determining the composition of bone in meat without the need for careful sample preparation.
BRIEF SUMMARY OF THE INVENTION
The present inventors have recognized that dual energy x-ray analyses, developed originally for medical imaging, can be used to make non-destructive composition measurements and images for irregular meat samples. The dual energy technique provides an indication of relative proportions of the meat and bone composition largely indifferent to total material mass or density of the composition so that careful preparation of the samples is not required.
In particular, the present invention provides a method of detecting bone in meat including a first step of identifying an index of photoelectric absorption and Compton scattering values corresponding to meat and bone. A beam of x-ray radiation having first and second energies is generated and a meat sample of arbitrary size is inserted into the beam. The attenuation of the x-ray beam at the first and second energies is detected after it has passed through the meat sample. From the index and the attenuation of the x-rays at the first and second energies, a ratio of bone and non-bone portions of meat is deduced, and a bone image based upon the ratio determined at different points through the meat sample is outputted.
Thus it is one object of the invention to make use of a modeling of Compton scattering and photoelectric absorption to cancel out effects caused by varying thicknesses, densities, and inhomogeneities in the measured material and in this way provide a flexible inspection tool for meat samples where extensive sample preparation is impractical.
It is another object of the invention to provide bone images such as may be used to improve conventional machine vision techniques for the detection of bone content in the meat samples.
The bone image may be evaluated against a threshold value, such as the number of bone fragments, the area of bone fragment, the area of bone fragment times mass within that area, the shape of a bone fragment, and the total mass of bone.
Thus it is another object of the invention to provide a bone image providing indication of unacceptable bone content based on one or more of various characteristics of the bone content, such as size, quantity or shape.
The method may include the further step of deducing from the attenuation of the x-rays at the first and second energy, the total mass traversed by the beam. This mass may be output or used with the relative proportion to output masses of the first and second material.
Thus it is another object of the invention to provide total mass value in addition to the proportions of two basis materials in a meat sample. The same modeling process that allows the measurement of proportion to be indifferent to the quantity of the material to be measured allows the quantity to be deduced. This total mass value can provide additional information useful, for example, in combining relative proportion measurements for different samples in a mass weighted average.
The x-ray beam may be operated on a continuous basis as the meat samples are moved through the beam along a path, and the path length during which the meat samples are moved through the beam may be measured to producing a total composition mass as a time integral of the total mass traversed by the beam. In this regard, a conveyor holding the meat samples may perform movement of the compositions and the conveyor may include a sensor providing a measure of path length movement. The meat samples may be constrained in extent perpendicular to the beam axis and the path such that the constrained extent lies wholly within the beam.
Thus it is another object of the invention to allow quantitative assessment of a loosely aggregated meat samples. By constraining the composition only to lie within the beam width without regard to height or length, the composition can be fully characterized as it passes through the beam.
Creating the x-ray beam may make use of two x-ray tubes, each providing different x-ray energy. The two x-ray tubes may be operated at different voltages and/or be filtered using different filters. Two separate x-ray detectors may be used to measure the attenuations at the two energies with each x-ray tube directing a beam to a different one of the detectors. The x-ray detectors may optionally be preferentially sensitive to a different one of the first and second x-ray energy.
Thus it is another object of the invention to greatly simplify the manufacture of a device for dual energy composition inspections by using two x-ray tubes and possible dedicated detectors that may be optimized for their one particular energy measurement.
The foregoing and other objects and advantages of the invention will appear from the following description. In this description, reference is made to the accompanying drawings which form a part hereof and in which there is shown by way of illustration preferred embodiments of the invention. Such embodiments do not necessarily represent the full scope of the invention, however, and reference must be made therefore to the claims for interpreting the scope of the invention.


REFERENCES:
patent: 2992332 (1961-07-01), Madigan
patent: 4168431 (1979-09-01), Henriksen
patent: 4504963 (1985-03-01), Johnson
patent: 5123037 (1992-06-01), Picard et al.
patent: 5247559 (1993-09-01), Ohtsu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of inspecting meat for bone content using dual energy... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of inspecting meat for bone content using dual energy..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of inspecting meat for bone content using dual energy... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3015811

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.