Method of inhibiting color change in a plastic article...

Stock material or miscellaneous articles – Composite – Of inorganic material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S331110

Reexamination Certificate

active

06187456

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to improvements in inhibiting undesirable discoloring of plastic articles within which silver-based antimicrobials have been introduced. Such a method requires the utilization of very low amounts of compound which acts as both an acid scavenger and a stabilizer of the silver ions. The preferred acid scavenger/silver stabilizer compound is aluminum-magnesium hydroxycarbonate, otherwise known as hydrotalcite. Such hydrotalcites are very low in cost, easy to handle, and, when utilized in very low levels in combination with a silver-based antimicrobial within a plastic composition, surprisingly substantially prohibits the generation of unwanted aesthetically displeasing colors.
DISCUSSION OF THE PRIOR ART
There has been a great deal of attention in recent years given to the hazards of bacterial contamination from potential everyday exposure. Noteworthy examples of such concern include the fatal consequences of food poisoning due to certain strains of
Eschericia coli
being found within undercooked beef in fast food restaurants; Salmonella contamination causing sicknesses from undercooked and unwashed poultry food products; and illnesses and skin infections attributed to
Staphylococcus aureus
, yeast, and other unicellular organisms. With such an increased consumer interest in this area, manufacturers have begun introducing antimicrobial agents within various household products and articles.
Silver-containing inorganic microbiocides have recently been developed and utilized as antimicrobial agents on and within a plethora of different substrates and surfaces. In particular, such microbiocides have been adapted for incorporation within plastic compositions and fibers in order to provide household and consumer products which inherently exhibit antimicrobial characteristics. Although such silver-based agents provide excellent antimicrobial properties within plastic articles, and the like, aesthetic problems have been found to be a frequent problem. This is believed to be due to several causes, all with their root in the inherent photo-instability of silver ions. The formation of colored species of silver metals discolors the plastic composition which, again from an aesthetic perspective, is highly undesirable. Thus, there has been a need to provide a method of introducing silver-based antimicrobial agents within plastic compositions which substantially reduces the degree of unwanted discoloration within the resultant article due to silver metal contamination.
Past methods have included the addition of benzotriazoles, as in U.S. Pat. No. 5,405,644 to Ohsumi et al., and triazoles and stabilizers (such as metal stearate acid scavengers), as in U.S. Pat. No. 4,938,955 to Niira, deceased et al. However, these methods have proven to be costly (with the high expense of benzotriazoles initially), particularly since relatively high concentrations of the expensive stabilizing compounds are required. Also, as these stabilizers are not thermally stable, they introduce additional processing complications. As such, there is no teaching or fair suggestion within the prior art which pertains to the improvement in methods of inhibiting color change (discoloration) of plastic articles comprising silver-based antimicrobials utilizing an aluminum-magnesium hydrotalcite in an amount of from 0.001 to about 0.2% of the total plastic composition.
DESCRIPTION OF THE INVENTION
It is thus an object of the invention to provide an improved method of inhibiting discoloration of plastic articles comprising silver-based antimicrobial agents. A further object of the invention is to provide a compound which acts as both an acid scavenger and a silver-based antimicrobial complex stabilizer within a plastic composition. Another object of the invention is to provide an aesthetically pleasing plastic article exhibiting excellent antimicrobial properties. Yet another object of this invention is to provide a cost effective method of inhibiting color change within a plastic composition due to degradation of silver-based antimicrobial complexes.
Accordingly, this invention encompasses a plastic article comprising a silver-based antimicrobial agent and an aluminum magnesium hydrotalcite wherein said hydrotalcite is present in an amount of from about 0.001 to about 0.2% of the total weight of the plastic article. Also, this invention encompasses a method of inhibiting color change in a plastic composition or article comprising a silver-based antimicrobial complex, said method comprising the step of introducing an aluminum magnesium hydrotalcite within a molten thermoplastic resin composition and molding said resultant thermoplastic/hydrotalcite composition into a plastic article, wherein the concentration of said hydrotalcite within said plastic article is from about 0.001 to about 0.2% of the total weight of said plastic article. Nowhere within the prior art has such a specific plastic article or method of making thereof been disclosed, utilized, or fairly suggested to produce an antimicrobial article which is resistant to color change due to degradation of the silver-based antimicrobial complex.
The closest art, U.S. Pat. No. 5,750,609 to Nosu et al., discloses an ultraviolet protective agent for incorporation within a variety of compositions, such as films, fibers, cosmetics, and the like. Patentees' protective agent is a zinc-based hydrotalcite which acts solely as an ultraviolet absorber; must be present in an amount of at least 1% of the total target composition; and must contain a zinc component (which increases the cost of such a compound considerably from a mere aluminum magnesium compound). The hydrotalcite encompassed within this invention expressly does not include a zinc-based compound. Furthermore, such a zinc compound must be present in such high concentrations in order to act effectively as an ultraviolet blocking agent; in lower proportions, there would not be sufficient amounts of this compound to provide such desired UV absorbing results. Thus, no disclosures exist which either teach or fairly suggest the specific antimicrobial plastic articles and methods of making such now discussed.
Any plastic in which a silver-based antimicrobial agent may be properly incorporated can be utilized in this invention. For instance, and without intending any limitations therein, polyolefins, such as polyethylene, polypropylene, and polybutylene, halogenated polymers, such as polyvinyl chloride, polyesters, such as polyethylene terephthalate, polyamides, such as nylon 6 and nylon 6,6, polyurethanes, and the like, may be utilized within this invention. Preferably, the plastic is a thermoplastic which can be molded into different shapes and sizes upon extrusion a molding with the silver-based antimicrobial and the hydrotalcite compounds. Thus, polyolefins, particularly polypropylene, and polyesters, particularly polyethylene terephthalate are preferred. Furthermore, such plastics preferably may be colored to provide other aesthetic features for the end user. Thus, the plastic may also comprise colorants, such as, for example, poly(oxyalkylenated) colorants, pigments, dyes, and the like, too. Other additives may also be present, including antistatic agents, brightening compounds, nucleating agents, clarifying agents, antioxidants, UV stabilizers, fillers, and the like.
The preferred silver-based antimicrobial is a silver zirconium phosphate available from Toagasei Chemical Industry Co., Ltd., under the tradename NOVARON®, although any silver-containing antimicrobial which is susceptible to discoloration from the presence of silver metals from dissociation from a complex or from acid scavengers may also be utilized within the inventive plastic article (for instance, as merely an example, a silver substituted zeolite available from Shingawa under the tradename ZEOMIC® AJ). Generally, such an antimicrobial is added in an amount of from about 0.01 to 10% by total weight of the target plastic composition; more preferably from about 0.05 to about 2.0%; and most preferably from abou

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of inhibiting color change in a plastic article... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of inhibiting color change in a plastic article..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of inhibiting color change in a plastic article... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2598860

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.