Method of improving oxidation and corrosion resistance of a...

Metal treatment – Process of modifying or maintaining internal physical... – Producing or treating layered – bonded – welded – or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C148S522000, C205S251000

Reexamination Certificate

active

06332937

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a method of improving the oxidation and corrosion resistance of a superalloy article and to a superalloy article obtained by the process.
The invention is applicable to all kinds of superalloys, and particularly to monocrystalline superalloys and to superalloys having a low grain boundary density and weakly alloyed with hafnium (hafnium concentration below 0.5% by mass).
2. Summary of the Prior Art
The makers of land and aeronautical turbine engines are always faced with demands to increase efficiency and reduce specific consumption. One way of responding to these demands is to increase the temperature of the burnt gases at the turbine inlet. However, this approach is limited by the ability of the turbine parts, such as the distributors or the rotor blades of the high-pressure stages, to withstand high temperatures. Refractory metallic materials called superalloys have been developed for these turbine parts. These superalloys are nickel, cobalt or iron based and provide the component with mechanical strength at high temperatures (creep resistance). At present the burnt gas temperature, which is typically 1600° C. for a modern engine, exceeds the melting point of the superalloys used, and the high-pressure stage blades and distributors are convection cooled by air at 600° C. taken from the compressor stages. Some of the cooling air which flows in the internal channels of the articles is discharged through ventilation apertures in the wall of the article to form a cold air film between the article surface and the hot gases.
In parallel to the adoption of sophisticated cooling techniques several generations of superalloy have been developed with increased creep resistance to meet the need to increase the temperature limit at the turbine inlet. The working temperature limit of these superalloys is of the order of 1050° C.
The improvements in superalloys have been made to the detriment of their oxidation and hot corrosion resistance, which had led to the development of coatings which protect against oxidation and corrosion. There are two kinds of protective coating. The first consists of nickel aluminide (NiAl) type coatings comprising atomic percentage of aluminum between 40% and 55%. These intermetallic coatings may be modified by the addition of chromium and/or a precious metal. The second consists of MCrAlY type metallic coatings where M denotes nickel or cobalt or iron or a combination of these metals. Both these kinds of protective coating form a film of aluminum oxide, called alumina, which insulates the metal below the coating from the external environment.
After the development of superalloys and techniques for cooling rotor blades and distributors, heat barrier coatings constitute the most recent technology for achieving significant temperature gains at the turbine inlet. Heat barrier technology consists of coating superalloy articles with a fine insulating ceramic layer whose thickness can vary from a few tens of microns to several millimetres. In most cases the ceramic layer consists of zirconia stabilised by yttria, which has the advantages of being a poor heat conductor and having good chemical stability at high temperatures. The ceramic layer may be deposited by heat spraying or by electron beam physical vapour deposition, or EB-PVD for short. EB-PVD is the preferred method of making a deposition on the body of blades and distributors, mainly because the coating has a good surface texture and obstruction of the ventilation holes in the articles can be monitored. The ceramic layer deposited by EB-PVD consists of microcolumns perpendicular to the article surface. This microstructure enables the coating to adapt to thermal or mechanical deformations in the plane of the superalloy substrate.
The main difficulty with heat barrier technology is to ensure satisfactory adhesion of the ceramic layer to the article it is required to protect. In contrast to ceramic coatings prepared by hot spraying, adhesion of a ceramic layer deposited by EB-PVD is not mechanical but consists of chemical bonds with the article surface. The ionic conductivity and the porous structure of a zirconia-based ceramic layer is such as to permit, at high temperatures, the diffusion of oxygen from the ambient medium towards the interface with the metallic article, so that the metal oxidises.
If adhesion between the ceramic layer and the superalloy article is to be satisfactory the oxide film formed at the interface between the superalloy and the ceramic layer by EB-PVD must adhere both to the metal of the article and to the ceramic layer, have good mechanical strength, and limit oxidation of the metal below. To increase adhesion of the ceramic layer to the superalloy article it is known to interpose between the superalloy and the EB-PVD ceramic layer a sublayer which serves as a growth site for an alpha alumina film whose thickness varies from a few tenths of a micron to several microns. The EB-PVD heat barrier sublayers used so far are coatings developed to protect superalloys against high-temperature oxidation. These coatings have the property of being alumino-forming, i.e. forming an alumina film in the presence of oxygen at high temperatures. U.S. Pat. Nos. 4,321,311, 4,401,697 and 4,405,659 teach the use of MCrAlY type coatings as a heat barrier sublayer. U.S. Pat. Nos. 4,88,0614, 4,916,022 and 5,015,502 disclose the advantage of using coatings belonging to the aluminide family as a heat barrier sublayer.
It is also known from U.S. Pat. No. 5,427,866 and published European patent application 0718420 deposit the ceramic layer directly on a superalloy base whose surface has been modified by a precious metal of the platinum group. The superalloy surface is modified by deposition of an electrolytic platinum layer several microns thick on the base superalloy, followed by a vacuum diffusion heat treatment at a temperature between 1000° C. and 1150°C. The platinum reacts with the aluminum of the base superalloy to form a complex platinum aluminide incorporating a number of elements including nickel.
It is well known that superalloy oxidation resistance can be improved by the addition of yttrium to the superalloy, the weight percentage of yttrium varying from a few tens of ppm (ppm denoting parts per million) to several percent. Adding yttrium considerably improves the adhesion of the oxide films. Some other elements such as hafnium, zirconium, cerium and in general the lanthanides also help to improve the adhesion of the alumina layers. This effect of adding yttrium and/or related elements, called reactive elements, is exploited in U.S. Pat. No. 5,262,245 which describes a heat barrier coating having a ceramic layer deposited directly on a superalloy covered by an alumina film without the use of a sublayer. The absence of sublayer reduces production costs and weight and gives improved control over the geometry of thin-walled blade bodies.
The beneficial effect on adhesion of the oxide layers achieved by adding yttrium and/or reactive elements is mainly due to the trapping of the sulphur impurity at the core of the alloy in the form of yttrium sulphides or oxysulphides. The sulphur trapped by the addition of reactive elements is not free to move at high temperatures and cannot segregate at the oxide/metal interfaces.
The bad effect of residual sulphur on the adhesion of the alumina layers formed on superalloys has been shown by the experiments of Smialek et al in “Effect of Sulphur Removal on Scale Adhesion to PWA 1480”, Metallurgical and Materials Transactions, A Vol. 26A, February 1995. These experiments consisted of submitting to cyclic oxidation MiCrAl specimens which had been desulphurized by heat treatment in hydrogen. The oxidation behaviour of a desulphurized alloy is found to be comparable with that of an alloy doped by the addition of yttrium or other reactive elements. U.S. Pat. No. 5,538,796 describes the deposition of an EB-PVD ceramic layer directly on a base alloy desulphurized to a content of less than 1 ppm and

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of improving oxidation and corrosion resistance of a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of improving oxidation and corrosion resistance of a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of improving oxidation and corrosion resistance of a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2578024

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.