Method of improving compressibility of a powder and articles...

Specialized metallurgical processes – compositions for use therei – Compositions – Consolidated metal powder compositions

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C075S246000, C419S010000, C419S035000, C419S037000, C419S038000

Reexamination Certificate

active

06179894

ABSTRACT:

TECHNICAL FIELD
The present invention generally relates to powder metallurgy processes. More particularly, this invention relates to a process for improving the compressibility of relatively hard powders, and particularly iron alloy and ferromagnetic powders used to form magnets, so as to improve the magnetic properties of such magnets.
BACKGROUND OF THE INVENTION
The use of powder metallurgy (P/M), and particularly iron and iron alloy powders, is known for forming magnets, including soft magnetic cores for transformers, inductors, AC and DC motors, generators, and relays. An advantage to using powdered metals is that forming operations, such as compression molding, injection molding and sintering techniques, can be used to form intricate molded part configurations without the need to perform additional machining and piercing operations. As a result, the formed part is often substantially ready for use immediately after the forming operation.
To date, virtually all powder metal cores for AC electromagnetic applications have been formed of compacted particles of pure iron. As used herein, pure iron is defined as iron with only incidental impurities. As known in the art, pure iron is a soft magnet material that exhibits good magnetic properties and, being highly compressible (i.e., relatively soft and deformable), can be used in powder form to mold parts with reasonably high densities. For example, with the use of appropriate lubricants and/or binders, densities of 98% of theoretical can be achieved. However, many applications for magnets would benefit if a ferromagnetic material of better magnetic properties were used. Examples of such materials include soft magnet materials such as iron alloys, nickel and its alloys, cobalt and its alloys, iron-silicon alloys, iron-phosphorus alloys, iron-silicon-aluminum alloys, ferrites and magnetic stainless steel alloys. In addition, permanent (“hard”) magnet materials that might be used include ferrites, iron-rare earth metal alloys, samarium alloys, and ceramic materials. As understood in the art, the terms “soft magnet” and “hard magnet” do not designate the physical hardness of a material, but its relative coercive field strength, with hard magnet materials being capable of exhibiting a very high coercive force that is retained after the magnetizing force is withdrawn. In terms of physical hardness, all of these materials are significantly harder than pure iron. As a result, these iron alloy materials are not widely used to produce powder metallurgy articles because of their poor compressibility, often resulting in molded densities of not more than 85% of theoretical, even with the use of lubricants and binders. The low density of a powder iron alloy magnet significantly limits its magnetic properties compared to an otherwise identical magnet formed with high density pure iron. Another detrimental effect of low density is lower green strength. While sintering improves the strength of a powder metallurgy article, sintering is inappropriate for some applications, such as AC magnets that require individual powder particles to be insulated from each other with a polymeric coating, and permanent magnets that cannot withstand the high temperatures required for sintering.
In view of the above, it would be desirable if a method were available that enabled hard, lower-compressible materials to be used to produce powder metallurgy articles, and particularly hard alloy iron materials to produce powder metallurgy magnets that exhibit magnetic properties superior to pure iron powder metallurgy magnets.
SUMMARY OF THE INVENTION
The present invention is directed to a method for producing high-density powder metallurgy articles formed of hard powder materials, and particularly hard alloy iron powders that yield powder metallurgy magnets exhibiting improved magnetic properties as compared to powder metallurgy magnets formed of pure iron. The method of this invention generally entails the use of a powder that is harder than pure iron, and then encapsulating each particle of the powder with a layer of pure iron. The powder is then compacted, by which the particles are adhered together to form a powder metallurgy article. As a result of forming a sufficiently thick encapsulating layer of iron on each powder particle, the powder can be compacted to a greater density than would be possible without the encapsulating layer of iron. If a ferromagnetic material is used, the resulting magnetic article is capable of exhibiting magnetic properties superior to a substantially identical pure iron powder metallurgy magnet.
In view of the above, it can be appreciated that this invention provides for the production of high-density powder metallurgy articles and magnets formed of relatively hard powder materials that normally exhibit low density when compacted. For magnet applications, the benefits made possible by the use of relatively hard ferromagnetic materials include lower-weight magnets to achieve a given magnet performance, and higher magnetic output for identical magnet mass. More generally, ferromagnetic materials having better magnetic properties than pure iron can be used to produce net-shape powder metallurgy magnets that can, depending on their compositions, exhibit lower hysteresis, higher permeability, higher maximum induction, higher low-frequency outputs, reduced heat loss and higher efficiencies than possible with pure iron magnets. Lower production costs, reduced scrappage and more design flexibility are also potential advantages to producing net-shaped hard articles by the powder metallurgy technique of this invention.
Other objects and advantages of this invention will be better appreciated from the following detailed description.


REFERENCES:
patent: 4129443 (1978-12-01), Kaufman
patent: 4320080 (1982-03-01), Esper et al.
patent: 4977710 (1990-12-01), Une
patent: 5227235 (1993-07-01), Moro et al.
patent: 5352522 (1994-10-01), Kugimiya et al.
patent: 5478409 (1995-12-01), Takahashi
patent: 5885653 (1999-03-01), Waldenstrom et al.
patent: 5887242 (1999-03-01), Nygren et al.
patent: 5982073 (1999-11-01), Lashmore et al.
patent: 5993729 (1999-11-01), Lefebvre et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of improving compressibility of a powder and articles... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of improving compressibility of a powder and articles..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of improving compressibility of a powder and articles... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2526800

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.