Method of identifying tumor antigens that elicit a T-cell...

Chemistry: molecular biology and microbiology – Process of mutation – cell fusion – or genetic modification – Introduction of a polynucleotide molecule into or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S325000, C435S007100

Reexamination Certificate

active

06387701

ABSTRACT:

TECHNICAL FIELD
The present invention relates, in general, to RNA-loaded antigen presenting cells and, in particular, to methods for treating or preventing tumor formation or pathogen infection in a patient. The invention further relates to methods of monitoring T-cell stimulation and to methods of antigen discovery.
BACKGROUND OF THE INVENTION
Previously-described methods for treating cancers include the use of chemotherapeutics, radiation therapy, and selective surgery. The identification of a few tumor antigens has led to the development of cell-based therapies. These methods rely on first identifying a tumor antigen (i.e., a polypeptide that is expressed preferentially in tumor cells, relative to non-tumor cells). Several human tumor antigens have been isolated from melanoma patients, and identified and characterized (Boon and van der Bruggen, 1996, J. Exp. Med. 183: 725-729). These polypeptide antigens can be loaded onto antigen-presenting cells, and then be administered to patients in a method of immunotherapy (i.e., as a vaccine). Alternatively, the polypeptide-loaded antigen presenting cells can be used to stimulate CTL proliferation ex vivo. The stimulated CTL are then administered to the patient in a method of adoptive immunotherapy.
A variety of methods have been described for treating infections with intracellular pathogens such as viruses and bacteria. For example, antibiotics are commonly used to treat bacterial infections. Preparations of killed pathogens can also serve as vaccines. In addition, CTL-based therapies have been described for treating such infections.
SUMMARY OF THE INVENTION
It has now been discovered that tumor formation in a patient can be treated or prevented by administering to the patient an antigen-presenting cell(s) that is loaded with antigen encoded in RNA derived from a tumor. For convenience, an RNA-enriched tumor preparation can be used in lieu of purified RNA. The invention thus circumvents the need purify RNA or isolate and identify a tumor antigen. Using similar methods and pathogen-derived RNA, pathogen infection in a patient can be treated or prevented. The RNA-loaded antigen-presenting cells can be used to stimulate CTL proliferation ex vivo or in vivo. The ex vivo expanded CTL can be administered to a patient in a method of adoptive immunotherapy.
Accordingly, the invention features a method for producing an RNA-loaded antigen-presenting cell (APC); the method involves introducing into an APC in vitro (i) tumor-derived RNA that includes tumor-specific RNA which encodes a cell-surface tumor antigenic epitope which induces T cell proliferation or (ii) pathogen-derived RNA that includes pathogen-specific RNA which encodes a pathogen antigenic epitope that induces T cell proliferation. Upon introducing RNA into an APC (i.e., “loading” the APC with RNA), the RNA is translated within the APC, and the resulting protein is processed by the MHC class I or class II processing and presentation pathways. Presentation of RNA-encoded peptides begins the chain of events in which the immune system mounts a response to the presented peptides.
Preferably, the APC is a professional APC, such as a dendritic cell or a macrophage. Alternatively, any APC can be used. For example, endothelial cells and artificially generated APC can be used. The RNA that is loaded onto the APC can be provided to the APC as purified RNA, or as a fractionated preparation of a tumor or pathogen. The RNA can include poly A
+
RNA, which can be isolated by using conventional methods (e.g., use of poly dT chromatography). Both cytoplasmic and nuclear RNA are useful in the invention. Also useful in the invention is RNA encoding defined tumor or pathogen antigens or epitopes, and RNA “minigenes” (i.e., RNA sequences encoding defined epitopes). If desired, tumor specific or pathogen-specific RNA can be used; such RNA can be prepared using art-known techniques such as subtractive hybridization against RNA from non-tumor cells or against related, but non-pathogenic, bacteria or viruses.
The RNA that is loaded onto APC can be isolated from a cell, or it can be produced by employing conventional molecular biology techniques. For example, RNA can be extracted from tumor cells, reverse transcribed into cDNA, which can be amplified by PCR, and the cDNA then is transcribed into RNA to be used in the invention. If desired, the cDNA can be cloned into a plasmid before it is used as a template for RNA synthesis. RNA that is synthesized in vitro can, of course, be synthesized partially or entirely with ribonucleotide analogues or derivatives. Such analogues and derivatives are well known in the art and can be used, for example, to produce nuclease-resistant RNAs. The use of RNA amplification techniques allows one to obtain large amounts of the RNA antigen from a small number of cells.
Included within the invention are methods in which the RNA is isolated from a frozen or fixed tissue. Tumor specimens commonly are isolated from cancer patients and then stored, for example, as cryostat or formalin fixed, paraffin-embedded tissue sections. Because cancer patients often have few tumor cells, the isolation of RNA from fixed tissues is particularly advantageous in producing the APC's of the invention because the method can utilize a small tissue sample. Microdissection techniques can be used to separate tumor cells from normal cells. RNA can then be isolated from the tumor cells and amplified in vitro (e.g., by PCR or reverse transcription PCR (RT-PCR)). The resulting, amplified RNA then can be used to produce the RNA-loaded APC's described herein.
If desired, RNA encoding an immunomodulator can also be introduced into the APC loaded with tumor-derived or pathogen-derived RNA. In this embodiment, the RNA-encoded immunomodulator is expressed in the APC and enhances the therapeutic effect (e.g., as a vaccines) of the RNA-loaded APC'S. Preferably, the immunomodulator is a cytokine or costimulatory factor (e.g., an interleukin, such as IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, or IL-15, or GM-CSF).
To introduce RNA into an APC, the APC may be contacted with the tumor- or pathogen-derived RNA in the presence of a cationic lipid, such as DOTAP or 1:1 (w/w) DOTMA:DOPE (i.e., LIPOFECTIN). Alternatively, “naked” RNA can be introduced into the cells. Other art-known transfection methods also can be used to introduce the RNA into the APC.
In a variation of the above methods, the RNA that is introduced into the APC can be engineered such that it encodes a cell trafficking signal sequence in addition to a tumor antigen or pathogen antigen. Such an engineered RNA can be thought of as containing two RNA sequences that are covalently linked and which direct expression of a chimeric polypeptide. One RNA sequence encodes the tumor or pathogen antigen, while the other RNA sequence encodes the cell trafficking sequence, thus forming a chimeric polypeptide. The chimeric polypeptides that contain an antigen linked to a trafficking sequence are channeled into the MHC class II antigen presentation pathway. Examples of suitable trafficking sequences are provided below.
Because practicing the invention does not require identifying an antigen of the tumor cell or pathogen, RNA derived from essentially any type of tumor or pathogen is useful. For example, the invention is applicable, but not limited, to the development of therapeutics for treating melanomas, bladder cancers, breast cancers, pancreatic cancers, prostate cancers, colon cancers, and ovarian cancers. In addition, the invention can treat or prevent infections with pathogens such as Salmonella, Shigella, Enterobacter, human immunodeficiency virus, Herpes virus, influenza virus, poliomyelitis virus, measles virus, mumps virus, or rubella virus.
The antigen-presenting cells produced in accordance with the invention can be used to induce CTL responses in vivo and ex vivo. Thus, the invention includes methods for treating or preventing tumor formation in a patient by administering to the patient a therapeutically

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of identifying tumor antigens that elicit a T-cell... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of identifying tumor antigens that elicit a T-cell..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of identifying tumor antigens that elicit a T-cell... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2829393

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.