Bleaching and dyeing; fluid treatment and chemical modification – Color protecting process for dyed product
Reexamination Certificate
2000-07-20
2003-04-22
Ogden, Necholus (Department: 1751)
Bleaching and dyeing; fluid treatment and chemical modification
Color protecting process for dyed product
C008S442000, C008S405000, C008S406000, C008S407000, C008S408000
Reexamination Certificate
active
06551361
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a method of reducing colour loss from hair treated with an oxidative composition, such as an oxidative hair dye, using certain selected organic amino compounds.
BACKGROUND OF THE INVENTION
The most commonly used method of dyeing hair, particularly human hair, is oxidative dyeing in which a mixture of aromatic compounds, generally of the benzenoid series, which are themselves colourless, are converted by coupling reactions to a blend of coloured compounds within the hair fibers by oxidative processes. The colourless aromatic compounds, in a suitable base formulation, are normally mixed with hydrogen peroxide or other strong oxidizing agent shortly before use. The coloured compounds or dyes are, typically, formed by oxidative coupling between primary intermediates (usually diamino benzenes or amino phenols) and couplers which are phenols or related cyclic compounds. Various shades are developed by using a mixture containing more than one of both the intermediate and the coupler.
The intermediates and couplers because of their low molecular weights and water solubility diffuse easily into the hair where the coupling reaction takes place. The coloured products developed by oxidation, however, remain trapped in the hair by virtue of their higher molecular weights, relative insolubility in water and absorptive affinity to the internal hair surface. Although permanence is the objective of such oxidative dyeing methods, in practice it is difficult to achieve. The colour tends to fade over time and a contributory factor in fading is lack of wash-fastness. This means that the colour tends to leach out of the hair after repeated washing. This leads to gradual fading or changing of the applied colour. The action of other factors such as ultraviolet light, combing and perspiration also affects the colour.
We have now found that certain selected organic amino compounds, in particular arginine and urea, are effective for reducing colour loss from hair previously or subsequently treated with an oxidising agent such as an oxidative hair dye.
U.S. Pat. No. 3,861,868 describes an oxidation dye composition comprising arginine or a protein or polypeptide having a high arginine content, and theories that the arginine or proteins enhance the penetration of the dye precursors into the hair shaft, thereby stabilizing the dye molecules formed by oxidation.
In the above case the arginine or proteins are an integral component of the dye composition itself. In contrast, the present invention provides a method in which the selected organic amino compounds are incorporated into a conventional hair treatment composition such as a shampoo or conditioner to be applied in a separate stage to the oxidative composition. Advantageously, such a shampoo or conditioner can be applied repeatedly to give a beneficial progressive build-up of the colour protection effect, independently of the oxidative composition, for which repeated use would be damaging to the hair.
SUMMARY OF THE INVENTION
The present invention provides a method for reducing colour loss from hair treated with an oxidative composition, such as an oxidative hair dye, the method comprising the step of contacting the hair, either prior to or after treatment of the hair with the oxidative composition, with a colour protective composition comprising an organic amino compound selected from:
(i) basic amino acids;
(ii) urea;
(iii) guanidine;
(iv) salts and/or derivatives of any of (i) to (iii);
(v) mixtures of any of (i) to (iv).
DETAILED DESCRIPTION OF THE INVENTION
According to the method of the present invention, hair is contacted with a colour protective composition comprising certain selected organic amino compounds as described above, either prior to, or after treatment of the hair with an oxidative composition.
Preferably the colour protective composition is applied after treatment of the hair with the oxidative composition.
Oxidative Composition
By “treatment with an oxidative composition” is meant contacting the hair with an oxidative composition such as an oxidative hair dye.
The composition employed may be formed separately from the hair and then applied. It may also be formed by mixing the separate reactants as they are applied to the hair, for example by mixing the streams from separate aerosol containers as the streams are applied to the hair. It may also be formed by contacting the reactants with the hair to be treated as the reactants are applied to the hair, either concurrently or successively.
The term “oxidative dye” includes compounds and mixtures of compounds which can be oxidised under the treatment conditions described above to form hair colourants. It includes, for example, primary intermediates either alone or together with one or more couplers, autoxidative dyes, and melanin forming dyes such as DHI and its analogues. Hydrogen peroxide is the usual oxidising agent employed in conjunction with oxidative dyes. Other oxidizing agents for use in this context include perborates, persulfates and perhalites, particularly periodates. These oxidising agents are generally employed as ammonium salts or as salts of alkali metals.
Colour Protective Composition
The colour protective composition comprises an organic amino compound selected from:
(i) basic amino acids;
(ii) urea;
(iii) guanidine;
(iv) salts and/or derivatives of any of (i) to (iii);
(v) mixtures of any of (i) to (iv).
Basic Amino Acids
Basic amino acids (i) may be selected from lysine, arginine and histidine and mixtures thereof. These amino acids are hydrophilic due to their polar side chains. Lysine and arginine are positively charged at neutral pH, whereas histidine can be uncharged or positively charged depending on its local environment.
Arginine is the most preferred amino acid (i) in the method according to the invention.
Alternatively, proteins, polypeptides or other natural extracts having a high basic amino acid content can be used. For example, proteins having a major proportion of arginine units (in the range from about 50 to about 90%, by weight, of the total protein) in their structures are members of that class of proteins known as protamines. The protamine proteins are characterised by having: (a) a low molecular weight, in the range of about 5,000; (b) a high isoelectric point, in the pH range of about 10 to 12; and (c) a high arginine content, in the range from about 50 to about 90%, by weight of the total protein. Suitable examples are described in U.S. Pat. No. 3,997,659.
Proteins of high basic amino acid content as described above can be subjected to acid or base hydrolysis to yield polypeptides which also have a high basic amino acid content. Examples of suitable polypeptides are also described in U.S. Pat. No. 3,997,659, being protamine-derived polypeptides having a molecular weight below about 5,000, a basic pH (10-12), and an arginine content of about 50%, or greater, by weight of the total polypeptide.
Not only may naturally occurring proteins be used, but also synthetic proteins, for example, polylysine and polyarginine, or mixtures thereof.
An example of a suitable natural extract which is rich in arginine is aloe vera extract.
The basic amino acids and the proteins and polypeptides having a basic amino acid content of 50%, or greater, are often isolated from natural sources in the form of salts and hydrosalts, which are also suitable for use according to the invention. Such salts and hydrosalts are formed by reaction with mineral acids such as hydrochloric acid, phosphoric acid, carbonic acid, sulfuric acid, nitric acid, and the like, or the organic acids such as formic acid, acetic acid, lauric acid, chloroacetic acid and the like. A suitable example is arginine hydrochloride.
Guanidine (iii) may also be present as a salts or hydrosalts formed by reaction with mineral or organic acids as described above. A suitable example is guanidine hydrochloride.
The most preferred organic amino compounds in the method according to the invention are arginine and urea and their respective salts and/or hydrosalts.
Mixt
Cornwell Paul Alfred
Noel Nathalie
Skinner Richard
Elhilo Eisa
Honig Milton L.
Ogden Necholus
Unilever Home & Personal Care USA , division of Conopco, Inc.
LandOfFree
Method of hair treatment using organic amino compounds does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of hair treatment using organic amino compounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of hair treatment using organic amino compounds will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3079523