Method of gas stream purification having independent vapor...

Mineral oils: processes and products – Fractionation – Recovery of mineral oil from natural or converted gases

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C208S095000, C208S101000, C208S134000, C208S341000, C208S343000

Reexamination Certificate

active

06303022

ABSTRACT:

FIELD OF THE INVENTION
The present invention is related to methods for recovering liquifiable hydrocarbons from light hydrocarbon gas streams by refrigeration and absorption using a liquid hydrocarbon-containing stream. Typically, the liquifiable hydrocarbons are present in a hydrogen-containing stream.
BACKGROUND OF THE INVENTION
Various types of catalytic hydrocarbon conversion reaction systems have found widespread utilization throughout the petroleum and petrochemical industries for effecting the conversion of hydrocarbons to different products. The reactions employed in such systems are either exothermic or endothermic and, of more importance to the present invention, often result in either the net production of hydrogen or the net consumption of hydrogen. Typical of the net hydrogen-producing hydrocarbon reaction systems are catalytic reforming, catalytic dehydrogenation of alkylaromatics, and catalytic dehydrogenation of paraffins. Commonly employed net hydrogen-consuming reaction systems are hydrotreating, hydrocracking, and catalytic hydrogenation. Of the above-mention net hydrogen-producing and consuming hydrocarbon reaction systems, catalytic reforming ranks as one of the most widely employed.
With the operation of net hydrogen producing processes the hydrogen balance for the petroleum refinery or petrochemical complex may result in excess hydrogen, i.e., the net hydrogen-producing reaction systems produce more hydrogen than is necessary for the net hydrogen-consuming reaction systems. In such an event, the excess hydrogen may be sent to the petroleum refinery or petrochemical complex fuel system. However, because the excess hydrogen often has admixed therewith valuable components such as C
3
+ hydrocarbons, it is frequently desirable to recover the three components by treating the excess hydrogen prior to its passage to fuel.
Because hydrogen is relatively expensive, it has become the practice within the art of hydrocarbon conversion to supply hydrogen from reaction systems which result in the net production of hydrogen to reaction systems which are net consumers of hydrogen. Occasionally, the net hydrogen being passed to the net hydrogen-consuming reactions systems must be of high purity due to the reaction conditions and/or the catalyst employed in the systems. Such a situation may require treatment of the hydrogen from the net hydrogen-producing reaction systems to remove hydrogen sulfide, light hydrocarbons, etc. from the net hydrogen stream.
It is well known that high quality petroleum products in the gasoline boiling range, including—for example—aromatic hydrocarbons such as benzene, toluene, and the xylenes, are produced by the catalytic reforming process wherein a naphtha fraction is passed to a reaction zone wherein it is contacted with a platinum-containing catalyst in the presence of hydrogen. By virtue of its wide application and its utilization as a primary source of hydrogen for the net hydrogen-consuming reactions systems, catalytic reforming has become well known in the art of hydrocarbon conversion reaction systems. Generally, the catalytic reforming reaction zone effluent comprising gasoline boiling range hydrocarbons and hydrogen is passed to a vapor-liquid equilibrium separation zone and is therein separated into a hydrogen-containing vapor phase and an unstabilized hydrocarbon liquid phase. A portion of the hydrogen-containing vapor phase may be recycled to the reaction zone. The remaining hydrogen-containing vapor phase is available for use either by the net hydrogen-consuming processes or as fuel for the petroleum refinery or petrochemical complex fuel system. While a considerable portion of the hydrogen-containing vapor phase is required for recycle purposes, a substantial net excess is available for the other uses.
Because the dehydrogenation of naphthenic hydrocarbons is one of the predominant reactions of the reforming process, substantial amounts of hydrogen are generated within the catalytic reforming reaction zone. Accordingly, a net excess of hydrogen is available for use as fuel or for use in a net hydrogen-consuming process such as the hydrotreating of sulfur-containing petroleum feedstocks. However, catalytic reforming also involves a hydrocracking function among the products of which are relatively low molecular weight hydrocarbons including methane, ethane, propane, butanes and the pentanes; substantial amounts of which appear in the hydrogen-containing vapor phase separated from the reforming reaction zone effluent. These normally gaseous hydrocarbons have the effect of lowering the hydrogen purity of the hydrogen-containing vapor phase to the extent that purification is often required before the hydrogen is suitable for other uses. Moreover, if the net excess hydrogen is intended for use as fuel in the refinery or petrochemical complex fuel system, it is frequently desirable to maximize the recovery of C
3
+ hydrocarbons which are valuable as feedstock for other processes.
Many processes for the purification of hydrogen-rich gas streams from the effluent of hydrocarbon conversion reaction zones are disclosed. Well known processing procedures for hydrogen-containing effluent streams include steps to remove potentially valuable C
3
+ product hydrocarbons from hydrogen-containing gas streams. U.S. Pat. No. 5,238,555, issued Aug. 24, 1993, discloses a process wherein the effluent from a reforming zone is separated into a hydrogen containing stream and a hydrocarbon effluent. Both streams are chilled and the chilled streams are contacted to absorb lighter hydrocarbons from the hydrogen-containing stream. U.S. Pat. No. 5,178,751 shows another arrangement for separating light hydrocarbons from a chilled hydrogen-containing stream recovered from a reforming zone using a chilled hydrogen stream. In U.S. Pat. No. 5,178,751 the hydrogen-containing stream and the hydrocarbon steam are admixed and chilled together in a single chiller, but the admixture of the streams precludes any independent control of the temperature of the gas and liquid phases.
SUMMARY OF THE INVENTION
This invention is a refrigeration method for the recovery of hydrocarbons from light gas streams by the adsorption of light hydrocarbons from a chilled hydrocarbon stream using a chilled liquid phase hydrocarbon stream wherein the method independently controls the temperature of both phase streams in a single refrigeration chiller. The invention uses a chiller with a single shell, a single refrigerant, and two exchanger sections to independently chill both streams in the single shell. The temperature of the liquid phase stream is controlled by adjusting the loading of the refrigeration compressor. The method diverts a small amount of the liquid phase stream into the gas phase stream before the gas phase stream enters the chiller to adjust the temperature of the chilled gas phase.
This arrangement confers numerous equipment and process benefits to the method of recovering the hydrocarbon streams. Costs are reduced by having the vapor and liquid exchanger bundle share a common shell for indirect contact with the refrigerant. The invention also eliminates the need for duplicate refrigeration expansion valves and other control systems such as duplicate refrigerant level controls and large pressure valves for regulating refrigerant vapor to the compressor suction line. The addition of a small amount of the liquid phase to adjust the temperature of the vapor phase has the added process advantage of providing another partial stage of adsorption prior to the gas phase stream entering the adsorber column. Therefore, the overall efficiency of the system is improved by the method while providing the significant capital cost savings.
Accordingly, in one embodiment, this invention is a method for recovering liquifiable hydrocarbons from a gas stream by chilling the gas stream and absorbing the liquifiable hydrocarbons with a chilled liquid stream. The liquid chiller feed is passed to a chiller having a single shell that retains exchanger sections for gas and liquid. Th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of gas stream purification having independent vapor... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of gas stream purification having independent vapor..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of gas stream purification having independent vapor... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2577895

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.