Electricity: power supply or regulation systems – In shunt with source or load – Using a three or more terminal semiconductive device
Reexamination Certificate
2003-06-05
2004-10-05
Riley, Shawn (Department: 2838)
Electricity: power supply or regulation systems
In shunt with source or load
Using a three or more terminal semiconductive device
C323S283000
Reexamination Certificate
active
06801024
ABSTRACT:
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The present invention relates in general to the field of voltage regulators, in particular to switching voltage regulators operating in accordance with the buck converter principle.
Electronic devices such as computer processors or other loads driven by d.c. power very often require one or more stable d.c. supply voltages for operation. In the past these d.c. supply voltages have been conventionally obtained with the aid of AC/DC converters which employ typical transformers and rectifiers as well as suitable capacitors and filters to convert an a.c. supply voltage to a determined d.c. voltage. However, the voltage requirements of electronic loads such as computer processors and logic ICs are relatively high with respect to the d.c. voltage stability. One reason is that processing circuits may process different amounts of data at various points in time which means that their workloads, and hence energy requirements, vary significantly. Such loads would benefit greatly from an adjustable and well-defined d.c. supply voltage.
There exist conventional voltage regulator circuits that provide a constant output voltage of a predetermined value by monitoring the output and using feedback to keep the output constant. In a typical pulse width modulation (PWM) regulator circuit, a square wave is provided to the control terminal of the switching device to control its ON and OFF states. Since increasing the ON time of the switching device increases the output voltage and vice versa, the output voltage may be controlled by manipulating the duty cycle of the square wave. This manipulation is accomplished by a control circuit which continually compares the output voltage to a reference voltage and adjusts the duty cycle of the square wave to maintain a constant output voltage.
U.S. Pat. No. 5,945,820 discloses a DC/DC switching regulator which converts a supplied d.c. voltage to a d.c. output voltage for driving a load using a DC/DC buck converter operated with fixed-width pulses at an instantaneous switching rate. The regulator has a feedback for computing a subsequent switching rate based on the instantaneous switching rate, an output frequency derived from output voltage by a ring oscillator and a desired frequency provided by a frequency signaling device or a frequency signaling port of the load. By altering the desired frequency the load communicates its power needs. The regulator can be used in the low-power regime and at high-power levels.
Another type of voltage regulator is described in U.S. Pat. No. 5,568,044 and WO 96/10287 to Bittner, the disclosure of which is herein incorporated by reference. That type of voltage regulator, which is also referred to as a buck converter, achieves high efficiency by automatically switching between a pulse frequency modulation (PFM) mode and a pulse-width modulation (PWM) mode. Switching between the modes of voltage regulation is accomplished by monitoring the output voltage and the output current, wherein the regulator operates in PFM mode at small output currents and in PWM mode at moderate to large output currents. PFM mode maintains a constant output voltage by forcing the switching device to skip cycles when the output voltage exceeds its nominal value. In PWM mode, a PWM signal having a variable duty cycle controls the switching device. A constant output voltage is maintained by feedback circuitry that alters the duty cycle of the PWM signal according to fluctuations in the output voltage. In a PFM mode of voltage regulation the system provides better efficiency at small output current levels than does a PWM mode driven system.
As mentioned, the PFM is a mode of the buck derived converter, which is used for very low load currents. In that mode the converter senses the output voltage with a comparator, which triggers when the output voltage is too low. It effects the turning on of the switching element, i.e. the power transistor, until the current through the inductor reaches a determined value, at which the output transistor is turned off. Therefore the frequency of the converter varies depending on the load. One of the problems that occurs in the PFM mode is when the DC/DC converter is overloaded. A further problem which is not yet solved is the switch back from the PFM mode to the PWM mode, in particular the finding of a digital signal which can switch the converter from PFM to PWM.
In most of the commercially available products, such as, for example, from Linear Technologies and Maxim, a load current sensing scheme is used to determine when to change to the PWM mode in case of an overload condition that occurs in the PFM mode.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a method, performed by a voltage regulator, which addresses the above-mentioned problems and overcomes the above-mentioned disadvantages of the heretofore-known devices and methods of this general type. It is a particular object of the present invention to provide a solution to an overload condition that occurs while the device operates in the PFM mode. It is a further object of the present invention to provide for a switch from the PFM mode to the PWM mode.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method performed by a voltage regulator, which comprises the steps of:
generating a regulated output voltage and an output current at an output terminal of the voltage regulator with a switching device, the switching device providing the output current and having an ON state and an OFF state;
providing a first control circuit with:
a square wave generator outputting a square wave having a duty cycle corresponding to the regulated output voltage, the square wave generator controlling the ON and OFF states of the switching device; and
a first feedback circuit for generating an error signal based on a difference between a voltage corresponding to the output voltage and a first reference voltage and varying a duty cycle of the square wave generator in response to the error signal to cause the output voltage to be of a predetermined voltage level;
controlling the switching device with the first control circuit in pulse width modulation mode;
providing a second control circuit with:
a signal generator outputting a switching signal having a fixed duty cycle, the signal generator controlling the ON and OFF states of the switching device; and
a second feedback circuit functioning in a pulse frequency modulation mode;
introducing a time delay in the second feedback circuit for limiting a pulse frequency; and
controlling the switching device with the second control circuit and, when the switching device is switched ON or OFF, triggering the time delay and not allowing the switching device to turn ON until the time delay is OFF.
It is one primarily important aspect of the present invention that in a method performed by a voltage regulator a limitation of the pulse frequency is introduced in the PFM mode. The pulse frequency is effectively limited by introducing a time delay in the second feedback circuit of the voltage regulator, i.e. the feedback circuit of the PFM mode. Due to the time delay the pulses generated and output to the LC-filter are spread in time so that the pulse frequency is effectively limited.
The invention relates, in particular, to a method performed by voltage regulator comprising the steps of generating a regulated output voltage and an output current at an output terminal of the regulator using a switching device for providing the output current, said switching device having an ON state and an OFF state, controlling the switching device with a first control circuit functioning in a pulse width modulation (PWM) mode, said first control circuit comprising a square wave generator outputting a square wave having a duty cycle corresponding to said regulated output voltage at the output terminal, wherein the square wave generator controls the ON and OFF states of the switching device, and a first feedback circuit for generating a
Greenberg Laurence A.
Infineon - Technologies AG
Locher Ralph E.
Riley Shawn
Stemer Werner H.
LandOfFree
Method of frequency limitation and overload detection in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of frequency limitation and overload detection in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of frequency limitation and overload detection in a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3273151