Method of forming porous film and material for porous film

Coating processes – Foraminous product produced

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S377000, C427S397700

Reexamination Certificate

active

06194029

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a method of forming a porous film and a material for a porous film used in the method.
As conventional methods of forming a porous film, the following four methods are known: In a first method, which is disclosed in “IEEE Transactions on components, hybrids, and manufacturing technology” (Vo. 15, No. 6, p. 925 (1992)), an organic polymer film is first formed from a copolymer of an organic polymer precursor with high thermal stability and an organic polymer precursor with low thermal stability, and a portion of the organic polymer film corresponding to the organic polymer precursor with low thermal stability is decomposed by heat treating the organic polymer film, thereby forming a porous film. In a second method, which is disclosed in “Advanced materials for optics and electronics” (vol. 1, p. 249 (1992)), an organic porous film is formed by depositing an organic polymer from an organic polymer solution placed in a supercritical state attained under a high pressure. In a third method, which is disclosed in “Macromol. Chem., Macromol. Symp.” (42/43, 303 (1991)), an organic polymer containing silica film is first formed from a mixed solution of a silanol sol and an organic polymer, and the organic polymer is thermally decomposed by heat treating the organic polymer containing silica film, thereby forming a porous film. In a fourth method, which is disclosed in “Conference Proceedings of Advanced Metallization and Interconnect Systems for ULSI Applications in 1995, 29”, a porous film is formed by gelating a silica sol by the sol-gel processing with controlling dryness of the silica sol. The fourth method is described in detail in Japanese Laid-Open Patent Publication Nos. 7-321206 and 8-162450. In addition, a fifth method is also known, as disclosed in Japanese Laid-Open Patent Publication Nos. 6-283864 and 8-330300, in which an organic material is dispersed in a silica coating film, and the organic material included in the silica coating film is blown through photochemical or thermal decomposition, thereby forming a porous film.
However, the first method of forming a porous film, in which the organic polymer film of the copolymer of the organic polymer precursor with high thermal stability and the organic polymer precursor with low thermal stability are heat treated so as to decompose the portion corresponding to the organic polymer precursor with low thermal stability, has a problem that the heat treatment is required to be conducted for 9 hours at a temperature of 275° C.
Also, the second method of forming a porous film by depositing the organic polymer from the organic polymer solution in the supercritical state has a problem that a pressure as high as several hundreds atomospheric pressure is necessary to attain the supercritical state.
Also, in the third method of forming a porous film by forming the organic polymer containing silica film from the mixed solution of silanol sol and the organic polymer and thermally decomposing the organic polymer included therein, the heat treatment is required to be conducted for 24 hours at a temperature of 600° C. Therefore, this method is very difficult to adopt, from a practical viewpoint, in formation of an interlayer insulating film of a porous film in manufacture of a semiconductor device.
Furthermore, the fourth method of forming a porous film by gelating silica sol by the sol-gel processing with controlling the dryness of the silica sol has a problem that an aging process is required to be conducted in an atmosphere of a solvent for controlling the volatizing rate of the solvent of the silica sol.
In addition, the fifth method of forming a porous film by blowing the organic material included in the silica coating film through photochemical or thermal decomposition is disadvantageously complicated.
Accordingly, the present inventors have proposed a method of forming a porous film in Japanese Laid-Open Patent Publication No. 9-298241. In this method, a residual silanol group in silanol condensate particles is chemically modified by a silyl group by adding a silylation reagent to a solution including silanol condensate particles (a commercially available SOG solution), and the solution including silanol condensate particles is applied on a substrate so as to form a coating film. The coating film is then heat treated so as to thermally decompose the silyl groups chemically modifying the silanol condensate particles. Thus, a porous film is formed.
Since this method of forming a porous film utilizes a SOG process generally used in the manufacture of a semiconductor, it is superior to the aforementioned conventional methods in obtaining a porous film through a simple process.
In order to minimize the size of a pore included in a porous film to an extent required in an interlayer insulating film used in an LSI, it is necessary to add the silylation reagent to the solution including silanol condensate particles in the presence of, for example, amine. However, when amine is added to the solution including silanol condensate particles, there arises a problem that the property of the solution including silanol condensate particles (namely, the material for the porous film) is changed with time in a very short period of time.
SUMMARY OF THE INVENTION
In view of the aforementioned conventional problems, an object of the invention is providing a method, as simple as the conventional SOG process, of forming a porous film in a short period of time at a low temperature under atmospheric pressure, in which a material for the porous film can be prevented from degrading with time, and in which the diameter of a pore in the porous film can be minimized sufficiently for integration in an LSI so as to decrease the dielectric constant of the porous film.
In order to achieve the object, the first method of forming a porous film of this invention comprises the steps of forming a coating film by applying, on a substrate, an organic acid containing solution obtained by adding an organic acid having an alkyl group to a solution including silanol condensate particles; and forming a porous film from the coating film by conducting a heat treatment on the coating film.
In the first method of forming a porous film, the organic acid having an alkyl group is preferably propionic acid, acetic acid, butyric acid, isobutyric acid, isovaleric acid, valeric acid, 2-ethyl-n-butyric acid or trimethylacetic acid.
The second method of forming a porous film of this invention comprises the steps of forming a coating film by applying, on a substrate, an organic acid containing solution obtained by adding an organic acid having halogen to a solution including silanol condensate particles; and forming a porous film from the coating film by conducting a heat treatment on the coating film.
In the second method of forming a porous film, the organic acid having halogen is preferably chloroacetic acid, dichloroacetic acid, trichloroacetic acid, fluoroacetic acid, difluoroacetic acid or trifluoroacetic acid.
The third method of forming a porous film of this invention comprises the steps of forming a coating film by applying, on a substrate, an organic acid containing solution obtained by adding an organic acid having a hydroxyl group to a solution including silanol condensate particles; and forming a porous film from the coating film by conducting a heat treatment on the coating film.
The fourth method of forming a porous film of this invention comprises the steps of forming a coating film by applying, on a substrate, an organic acid containing solution obtained by adding two or more organic acids having hydroxyl groups to a solution including silanol condensate particles; and forming a porous film from the coating film by conducting a heat treatment on the coating film.
In the third or fourth method of forming a porous film, the organic acid having a hydroxyl group is preferably hydroxypropionic acid, hydroxyacetic acid, hydroxybutyric acid, hydroxyisobutyric acid or hydroxyisovaleric acid.
The fifth method of forming a porou

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of forming porous film and material for porous film does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of forming porous film and material for porous film, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of forming porous film and material for porous film will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2597913

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.