Method of forming conductive polymeric nanocomposite materials

Plastic and nonmetallic article shaping or treating: processes – Forming electrical articles by shaping electroconductive... – Conductive carbon containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S128000

Reexamination Certificate

active

06680016

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention is directed to a conductive polymeric nanocomposite material incorporating uniformly dispersed vapor-grown carbon nanofibers, and to a method of forming such a nanocomposite material.
Vapor-grown carbon nanofibers are a unique form of carbon produced by a variation of a vapor-phase catalytic method in which a carbon-containing feedstock is pyrolyzed in the presence of small metal catalyst particles. The resulting nanofibers typically have an outer diameter of 60 to 200 nm, a hollow core of 30-90 nm, and a length on the order of 50 to 100 microns.
The use of vapor-grown carbon nanofibers has been proposed for providing improved mechanical, electronic and thermal transport properties to polymers. For example, vapor-grown carbon nanofibers have been dispersed in polymer matrices by a polymer melt blending method in which the dispersants in the polymer matrix are mechanically sheared apart. See, for example, U.S. Pat. No. 5,643,502. However, as most polymers are incompatible with carbon nanofibers, it is difficult to achieve uniform dispersion of the carbon nanofibers in the polymer matrix. In addition, the high shear mechanical blending can result in the breakage of the carbon nanofibers.
Accordingly, there is still a need in the art for an improved method of reinforcing a polymeric material with carbon nanofibers to produce a composite which has maximum attainable improvement in various mechanical, electrical, and thermal properties.
SUMMARY OF THE INVENTION
The present invention meets that need by providing a method for uniformly dispersing vapor-grown carbon nanofibers into polymer matrices which enhances their mechanical strength, dimensional stability, abrasion resistance, and electrical and thermal conductivity. The uniform dispersion of carbon nanofibers in a polymer matrix is achieved by dissolving the polymer in a solvent with the nanofibers, followed by evaporation or coagulation of the solvent.
According to one aspect of the present invention, a method of forming a conductive polymeric nanocomposite material incorporating carbon nanofibers is provided comprising providing vapor grown nanofibers, combining the nanofibers with a solvent to form a solution mixture, and adding a polymer to the solution mixture to form a substantially homogeneous mixture. The solvent is then removed from the mixture, preferably by evaporation or coagulation.
In an alternative embodiment of the invention, the method may comprise combining the carbon nanofibers, polymer, and solvent to form a substantially homogeneous mixture, followed by removal of the solvent.
The polymer used in the present invention is preferably selected from the group consisting of polyurethanes, polyimides, epoxy resins, silicone polymers, and aromatic-heterocylic rigid-rod and ladder polymers. The solvent is preferably selected from the group consisting of dimethyl sulfoxide, tetrahydrofuran, acetone, methanesulfonic acid, polyphosphoric acid and N,N-dimethyl acetamide. Preferably, both the polymer and the solvent for the polymer are polar.
The carbon nanofibers used in the present invention may comprise as-grown fibers, pyrolytically stripped fibers, or heat treated fibers.
The method of the present invention results in a conductive polymeric nanocomposite material having a conductivity which may be tailored, depending on the desired application, from less than 0.001 S/cm to greater than 20 S/cm. Where the conductive polymeric nanocomposite material is incorporated with heat-treated carbon nanofibers, the nanocomposite material may have an electrical conductivity greater than 20 S/cm, while materials incorporated with low concentrations of as-grown or pyrolytically stripped carbon nanofibers may be tailored to have an electrical conductivity smaller than about 10
−6
S/cm.
The conductive polymeric nanocomposite material formed by the present invention preferably has an electronic conducting percolation threshold of less than 1% by volume of the carbon nanofibers.
The polymeric nanocomposite materials formed by the method of the present invention may be used to form conductive paints, coatings, caulks, sealants, adhesives, fibers, thin films, thick sheets, tubes, and large structural components. The carbon nanofibers in the resulting nanocomposite materials may be used to confer the desired mechanical strength, stiffness, dimensional stability, thermal conductivity, and tribological properties (i.e., reduced surface friction) in such products.
The nanocomposite materials may be used in a wide variety of commercial applications including space, aerospace, electronic, automotive, and chemical industries. The nanocomposite materials may also be used in electromagnetic interference shielding, electromagnetic pulse applications, electrical signal transfer, electrostatic painting of panels, electrostatic discharge and electro-optical devices such as photovoltaic cells.
Accordingly, it is a feature of the present invention to provide a method of forming a conductive polymeric nanocomposite material which results in uniform dispersion of carbon nanofibers in a polymeric matrix. Other features and advantages of the invention will be apparent from the following description and the appended claims.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
We have found that the polymer nanocomposite material produced by the method of the present invention is two to three orders of magnitude more conductive than that produced by a polymer melt blending method when the same amount of carbon nanofibers is used. We have also found that the resulting polymer nanocomposite material has a very low electronic conducting percolation threshold of less than 1% by volume of the carbon nanofibers, which is indicative of an extremely large aspect ratio of the carbon nanofibers. This also indicates that the method of the present invention is more effective in uniformly dispersing the carbon nanofibers in the polymer matrices and preserving a large aspect ratio of length to diameter of the nanofibers than prior polymer melt blending methods. It is important to maintain the large aspect ratio of the carbon nanofibers to confer maximum attainable reinforcement, especially for applications such as the use of elastomeric polymers for forming gaskets or seal structures.
The method of the present invention achieves uniform dispersion of vapor-grown carbon nanofibers in polymer matrices by dissolving the polymer in a solvent with the carbon nanofibers. While carbon nanofibers alone do not disperse well in organic solvents, we have found that they disperse very well in the presence of a polymer. Accordingly, the carbon nanofibers are combined with the polymer and solvent, followed by evaporation or coagulation of the solvent to form the conductive polymeric nanocomposite material. After the solvent is removed, the polymer nanocomposite material can be further processed into various shapes by conventional extrusion and molding techniques without losing its conductivity.
The method of the present invention provides an advantage over prior melt-blending processes in that a low-temperature solution process is used to disperse the carbon nanofibers. The method does not require high shear mixing of the polymer melt at elevated temperatures, which typically degrades the aspect ratio of the carbon nanofibers and leads to inferior reinforcement.
In addition, the mechanical and thermal transport properties of the resulting polymer nanocomposite material may be tailored by using different types and amounts of the carbon nanofibers. For example, in EMI shielding applications, the resulting conductivity should be greater than 1 S/cm. For electrostatic painting of panels, the desired conductivity is about 10
−4
to 10
−6
S/cm, and for electrostatic discharge applications, about 10
−8
to 10
−10
S/cm.
Preferred polymers for use in the present invention include polar polymers; however, it should be appreciated that any polymer may be used in the present invention as long as it is soluble in a s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of forming conductive polymeric nanocomposite materials does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of forming conductive polymeric nanocomposite materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of forming conductive polymeric nanocomposite materials will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3192986

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.