Method of forming carbon fibers

Chemistry of inorganic compounds – Carbon or compound thereof – Elemental carbon

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C423S447100, C423S44500R

Reexamination Certificate

active

06890506

ABSTRACT:
Carbon fiber/tubes are prepared by pyrolyzing a catalyst system that contains one or more diluents to facilitate control of the diameter of the formed carbon fiber/tube.

REFERENCES:
patent: 5165909 (1992-11-01), Tennent et al.
patent: 5780101 (1998-07-01), Nolan et al.
patent: 5872422 (1999-02-01), Xu et al.
patent: 5973444 (1999-10-01), Xu et al.
patent: 6333016 (2001-12-01), Resasco et al.
patent: 0 056 004 (1986-01-01), None
Sen et al. “Metal-Filled and Hollow Carbon Nanotubes Obtained by the Decomposition of Metal-Containing Free Precursor Molecules” 1997, Chemistry of Materials, vol. 9, No. 10, pp. 2078-2081.*
Huang et al. “Patterned Growth and Contact Transfer of Well-Aligned Carbon Nanotubes Films” May 7, 1999, Journal of Physica Chemistry B, vol. 103, pp. 4223-4227.*
S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature International Weekly of Journal of Science, vol. 352, No. 6348, Nov. 7, 1991, pp. 56-60.
T.W. Ebbesen, et al “Large-Scale Synthesis of Carbon Nanotubes” Nature International Weekly Journal of Science, vol. 358, Jul. 16, 1992, pp. 220-222.
A. Thess, et al, “Crystalline Ropes of Metallic Carbon Nanotubes” Nature International Weekly Journal of Science, vol. 273, No. 6383, Jul. 26, 1996, pp. 402, 483487.
Z.F. Ren, et al, “Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass” American Association for the Advancement of Science, vol. 282, No. 5391, No. 6, 1998, pp. 1105-1107.
M. Endo, et al, “Pyrolytic Carbon Nanotubes From Vapor-Grown Carbon Fibers” Carbon, Special Issue on Nanotubes, vol. 33, No. 7, 1995, pp. 873-881.
M. Terrones, et al, “Controlled Production of Aligned-Nanotubes Bundles” Nature International Weekly Journal of Science, vol. 388, No. 6637, Jul. 3, 1997, pp. 52-55.
P.M. Ajayan, et al, “Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite” American Association for the Advancement of Science, vol. 265, pp., 1212-1214.
Walt A. De Heer, et al, “Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties” American Association for the Advancement of Science, vol. 268, May 12, 1995, pp. 845-847.
W.Z. Li, et al, “Large-Scale Synthesis of Aligned Carbon Nanotubes” American Association for the Advancement of Science, vol. 274, Dec. 6, 1996, pp. 1701-1703.
M. Kusunoki, et al, “Epitaxial Carbon Nanotube Film Self-Organized by Sublimation Decomposition of Silicon Carbide” Applied Physics Letters, vol. 17, No. 13, Nov. 3, 1997, pp. 2620-2622.
R. Andrews, et al, “Continuous Production of Aligned Carbon Nanotubes: A Step Closer to Commercial Realization” Chemical Physics Letter, vol. 303, Apr. 16, 1999, pp. 467-474.
C. Liu, et al, “Synthesis of Macroscopically Long Ropes of Well-Aligned Single-Walled Carbon Nanotubes” Advanced Materials, vol. 12, No. 16, Aug. 16, 2000, pp. 1190-1192.
M. Yudasaka, et al, “Nitrogen-Containing Carbon Nanotube Growth From Ni Phthalocyanine by Chemical Vapor Deposition” Carbon, vol. 35, No. 2, 1997, pp. 195-201.
X.B. Wang, et al, “Honey-Comb-Like Alignments of Carbon Nanotubes Synthesized by Pyrolysis of a Metal Phthalocyanine” Applied Physics A Materials Science and Processing, vol. 71, No. 3, Sep. 2000, pp. 1-2.
K. Suenaga, et al, “Radically Modulated Nitrogen Distribution in CNxNanotubular Structures Prepared by CVD Using Ni Phthalocyanine” Chemical Physics Letters, vol. 316, Jan. 21, 2000, pp. 3654-372.
B. K. Pradhan, et al, “Nickel Nanowires of 4 NM Diameter in the Cavity of Carbon Nanotubes”, Chemical Communications, Royal Society of Chemistry, No. 13, Jul. 7, 1999, pp. 1153-1262.
S. Fan, et al, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties” vol. 283, Jan. 22, 1999, pp. 512-514.
C.J. Lee, et al, “Synthesis of Uniformly Distributed Carbon Nanotubes on a Large Area of Si Substrates by Thermal Chemical Vapor Deposition” Applied Physics Letters, vol. 75, No. 12, Sep. 20, 1999, pp., 1721-1723.
Z.F. Ren, et al, “Growth of a Single Freestanding Multiwall Carbon Nanotube on Each Nanonickle Dot” Applied Physics Letters, vol. 75, No. 8, Aug. 23, 1999, pp. 1086-1088.
C. Park, et al, “Catalytic Behavior of Graphite Nanofiber Supported Nickel Particles. 2. The Influence of the Nanofiber Structure” The Journal of Physical Chemistry B, vol. 102, 1998, pp. 5168-5177.
R. Gao, et al, “Kinetically Controlled Growth of Helical and Zigzag Shapes of Carbon Nanotubes”, The Journal of Physical Chemistry B, vol. 104, 2000, pp. 1227-1234.
A.R. Harutyunyan, et al, “Hyperfine Structure in the EPR Spectra of an Organometallic Magnet Based on Doped Cobalt Phthalocyanine” Chemical Physics Letters, vol. 246, No. 6, Dec. 6, 1995, pp., 615-618.
P.C. Eklund, et al, “Vibrational Modes of Carbon Nanotubes,; Spectroscopy and Theory” Carbon, vol. 33, No. 5, 1995, pp. 959-972.
J. M. Assour, et al, “Electron Spin Resonance of α- and β-Cobalt Phthalocyanine” Journal of the American Chemical Society, vol. 87, No. 2, Jan. 20, 1965.
“Nickel nanowires of 4 nm diameter in the cavity of carbon nanotubes”, Bhabendra K. Pradhan et al., Chem. Commun., 1999, pp. 1317-1318.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of forming carbon fibers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of forming carbon fibers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of forming carbon fibers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3460753

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.