Metal working – Method of mechanical manufacture – Fluid pattern dispersing device making – e.g. – ink jet
Reexamination Certificate
1999-12-21
2002-12-03
Vo, Peter (Department: 3729)
Metal working
Method of mechanical manufacture
Fluid pattern dispersing device making, e.g., ink jet
C029S830000, C029S831000, C029S852000, C427S096400, C427S097100, C427S190000, C427S201000, C427S205000, C252S06251C
Reexamination Certificate
active
06487774
ABSTRACT:
TECHNICAL FIELD
The present invention relates to an ink for electronic component used in various electronic appliances such as laminate ceramic capacitor, LC filter, and complex high frequency component, a manufacturing method of electronic component by using this ink for electronic component, and an ink jet device.
BACKGROUND ART
In a laminate ceramic electronic component which is a conventional example of electronic component, an electrode ink is printed and formed in a specified pattern as an internal electrode on. a ceramic green sheet composed of ceramic powder, polyvinyl butyral resin, and a slight portion of plasticizer, and a specified number of sheets are laminated, cut, and baked, and an external electrode is formed. As such electrode ink, various types have been proposed for screen printing, including, for example, an ink for internal electrode of laminate ceramic capacitor for screen ink prepared by kneading nickel metal powder by three rolls as disclosed in Japanese Laid-open Patent No. 5-205970, and an electrode ink for screen ink using ceramic powder coated with palladium proposed in Japanese Laid-open Patent No. 5-275263.
Further in Japanese Laid-open Patent No. 5-55075, a conductor paste containing nickel oxide is proposed for screen printing technology. In Japanese Laid-open Patent No. 5-90069, it is proposed to add rosin to a conductive paste for screen. Also in Japanese Laid-open Patent No. 5-226179, it is proposed to add scaly powder to a conductor paste for screen. In Japanese Laid-open Patent No. 5-242724, similarly, a conductive paste for screen by adding organic phosphoric acid is proposed. In Japanese Laid-open Patent No. 5-275263, coating zirconia powder with nickel or other base metal, a conductive paste for screen printing is proposed. In Japanese Laid-open Patent No. 5-299288, using polyether urethane resin, a manufacturing method of laminate ceramic capacitor for screen printing of internal electrode is proposed.
In the manufacturing method of laminate ceramic electronic component such as laminate ceramic capacitor, the internal electrode has been printed and formed by screen printing, but in order to lower the cost and enhance the performance, a gravure printing process is proposed in Japanese Patent Publication No. 5-25381 or Japanese Patent Publication No. 8-8200. In U.S. Pat. No. 5,101,319, a calender processing of electrode by gravure printing for laminate ceramic capacitor is proposed.
In the conventional electrode inks (whether for screen printing or for gravure, etc.), since an organic solvent is used as the main solvent, when printed on a ceramic green sheet, the ceramic green sheet may be swollen or dissolved again by the organic solvent contained in the electrode ink. Accordingly, as far as the thickness of the ceramic green sheet is 20 &mgr;m or more, it rarely causes shorting, but when the thickness of the ceramic green sheet is less than 15 &mgr;m, the shorting probability is very high.
To solve this problem, hitherto, a manufacturing method of ceramic electronic component by direct gravure printing on the green sheet has been proposed, for example, as disclosed in Japanese Patent Publication No. 8-8200. In this case, however, the shorting probability is high when the ceramic green sheet is thin, and accordingly Japanese Patent Publication No. 5-25381 proposes a method of transferring a gravure printed pattern on the ceramic green sheet because the ceramic green sheet may be swollen or damaged when the electrode is directly printed on the ceramic green sheet. Thus, regardless of the printing method, in the conventional electrode ink, the ceramic green sheet was damaged, and the shorting problem was caused in thin ceramic green sheets of 15 &mgr;m or less.
In the conventional ink jet device, it was designed to print by filling an ink cartridge of a commercial ink jet printer with an ink. When printed by this ink jet device, the ink often precipitated or gathered near the ink jet nozzle for injecting the ink, causing the problem of ink clogging.
The invention is to solve the problems of the prior arts, and it is hence an object thereof to present an ink for electronic component capable of preventing re-dissolving of ceramic green sheet and baking, a manufacturing method of electronic component by using this ink for electronic component, and an ink jet device.
SUMMARY OF THE INVENTION
To achieve the object, the invention comprises water or organic solvent, and one of metal powder, ceramic powder, magnetic powder, glass powder, or resistor powder with particle size of 0.001 &mgr;m or more to 10 &mgr;Am or less, dispersed in this water or organic solvent, by 1 wt. % or more to 80 wt. % or less, at viscosity of 2 poise or less.
Or it comprises water or organic solvent, and a resin dispersed in this water or organic solvent, by 1 wt. % or more to 80 wt. % or less, at viscosity of 2 poise or less.
The method comprises the steps of repeating a plurality of times of a process of forming a specified ink pattern on a ceramic green sheet by an ink jet method by using an ink prepared by dispersing metal powder with particle size of 0.001 &mgr;m or more to 10 &mgr;m or less, in at least water or organic solvent, by 1 wt. % or more to 80 wt. % or less, at viscosity of 2 poise or less, laminating a plurality of the ceramic green sheets forming this ink pattern to form a raw laminated body of ceramic, cutting to specified shape and baking, and forming an external electrode.
Or the method comprises the steps of repeating a plurality of times of a process of forming a specified first ink pattern on a ceramic green sheet by an ink jet method by using a first ink prepared by dispersing metal powder with particle size of 0.001 &mgr;m or more to 10 &mgr;m or less, in at least water or organic solvent, by 1 wt. % or more to 80 wt. % or less, at viscosity of 2 poise or less, and forming a specified second ink pattern by an ink jet method by using a second ink prepared by dispersing ceramic powder with particle size of 0.001 &mgr;m or more to 10 &mgr;m or less, in at least water or organic solvent, by 1 wt. % or more to 80 wt. % or less, at viscosity of 2 poise or less, laminating a plurality of the ceramic green sheets forming these ink patterns to form a raw laminated body of ceramic, cutting to specified shape and baking, and forming an external electrode.
Further, the method comprises the steps of repeating a plurality of times of a process of forming a specified ink pattern on a ceramic green sheet by a gravure printing method by using an ink prepared by dispersing metal powder with particle size of 0.001 &mgr;m or more to 10 &mgr;m or less, in at least water or organic solvent, by 1 wt. % or more to 80 wt. % or less, at viscosity of 2 poise or less, laminating a plurality of the ceramic green sheets forming this ink pattern to form a raw laminated body of ceramic, cutting to specified shape and baking, and forming an external electrode.
Or the method comprises the steps of repeating a plurality of times of a process of forming a specified first ink pattern on a ceramic green sheet by an ink jet method by using a first ink prepared by dispersing metal powder with particle size of 0.001 &mgr;m or more to 10 &mgr;m or less, in at least water or organic solvent, by 1 wt. % or more to 80 wt. % or less, at viscosity of 2 poise or less, forming a specified second ink pattern by an ink jet method by using a second ink prepared by dispersing ceramic powder with particle size of 0.001 &mgr;m or more to 10 &mgr;m or less, in at least water or organic solvent, by 1 wt. % or more to 80 wt. % or less, at viscosity of 2 poise or less on the upper surface of the ceramic green sheet so as to cover this first ink pattern, and forming a ceramic layer integrated with the ceramic green sheet, laminating a desired plurality of the ceramic green sheets having the ceramic layer to form a raw laminated body of ceramic, cutting to specified shape and baking, and forming an external electrode.
Also, the method comprises the steps of forming a pair of upper electrode layers on a
Nakao Keiichi
Okinaka Hideyuki
Tomioka Satoshi
Matsushita Electric - Industrial Co., Ltd.
McDermott & Will & Emery
Tugbang A. Dexter
Vo Peter
LandOfFree
Method of forming an electronic component using ink does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of forming an electronic component using ink, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of forming an electronic component using ink will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2934289