Method of forming a via in a microfabricated elastomer...

Plastic and nonmetallic article shaping or treating: processes – With severing – removing material from preform mechanically,... – Making hole or aperture in article

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S238000, C264S250000, C264S310000, C264S319000

Reexamination Certificate

active

11111264

ABSTRACT:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.

REFERENCES:
patent: 3570515 (1971-03-01), Kinner
patent: 3747628 (1973-07-01), Holster et al.
patent: 4046159 (1977-09-01), Pegourie
patent: 4119368 (1978-10-01), Yamakazi
patent: 4153855 (1979-05-01), Feingold
patent: 4245673 (1981-01-01), Bouteille et al.
patent: 4434704 (1984-03-01), Surjaatmadja
patent: 4848722 (1989-07-01), Webster
patent: 4898582 (1990-02-01), Faste
patent: 4992312 (1991-02-01), Frisch
patent: 5085562 (1992-02-01), Van Lintel
patent: 5088515 (1992-02-01), Kamen
patent: 5096388 (1992-03-01), Weinberg
patent: 5126115 (1992-06-01), Fujita et al.
patent: 5164558 (1992-11-01), Huff et al.
patent: 5171132 (1992-12-01), Miyazaki et al.
patent: 5224843 (1993-07-01), Van Lintel
patent: 5259737 (1993-11-01), Kamisuki et al.
patent: 5265327 (1993-11-01), Faris et al.
patent: 5290240 (1994-03-01), Horres, Jr.
patent: 5336062 (1994-08-01), Richter
patent: 5346372 (1994-09-01), Naruse et al.
patent: 5375979 (1994-12-01), Trah
patent: 5376252 (1994-12-01), Ekstrom et al.
patent: 5400741 (1995-03-01), DeTitta et al.
patent: 5423287 (1995-06-01), Usami et al.
patent: 5529465 (1996-06-01), Zengerle et al.
patent: 5593130 (1997-01-01), Hansson et al.
patent: 5642015 (1997-06-01), Whitehead et al.
patent: 5659171 (1997-08-01), Young et al.
patent: 5660370 (1997-08-01), Webster
patent: 5681024 (1997-10-01), Lisec et al.
patent: 5705018 (1998-01-01), Hartley
patent: 5759014 (1998-06-01), Van Lintel
patent: 5775371 (1998-07-01), Pan et al.
patent: 5788468 (1998-08-01), Dewa et al.
patent: 5836750 (1998-11-01), Cabuz
patent: 5842787 (1998-12-01), Kopf-Sill et al.
patent: 5875817 (1999-03-01), Carter
patent: 5876187 (1999-03-01), Afromowitz
patent: 5932799 (1999-08-01), Moles
patent: 5942443 (1999-08-01), Parce et al.
patent: 5965237 (1999-10-01), Bruin et al.
patent: 6007309 (1999-12-01), Hartley
patent: 6043080 (2000-03-01), Lipshutz et al.
patent: 6123769 (2000-09-01), Sanjoh
patent: 6155282 (2000-12-01), Zachary et al.
patent: 6174365 (2001-01-01), Sanjoh
patent: 6296673 (2001-10-01), Santarsiero et al.
patent: 6345502 (2002-02-01), Tai et al.
patent: 6409832 (2002-06-01), Weigl et al.
patent: 6767706 (2004-07-01), Quake et al.
patent: 6793753 (2004-09-01), Unger et al.
patent: 6899137 (2005-05-01), Unger et al.
patent: 6929030 (2005-08-01), Unger et al.
patent: 2001/0027745 (2001-10-01), Weigl et al.
patent: 2001/0033796 (2001-10-01), Unger et al.
patent: 2002/0029814 (2002-03-01), Unger et al.
patent: 2002/0037499 (2002-03-01), Quake et al.
patent: 2002/0144738 (2002-10-01), Unger et al.
patent: 2003/0019833 (2003-01-01), Unger et al.
patent: 0 592 094 (1994-04-01), None
patent: 0 703 364 (1996-03-01), None
patent: 0 706 004 (1996-04-01), None
patent: 0 779 436 (1997-06-01), None
patent: 0 829 360 (1998-03-01), None
patent: 0 845 603 (1998-06-01), None
patent: 0 999 055 (2000-05-01), None
patent: 2 155 152 (1985-09-01), None
patent: 2 308 460 (1997-06-01), None
patent: 1-283112 (1989-11-01), None
patent: WO 98/07069 (1998-02-01), None
patent: WO 99/00655 (1999-01-01), None
patent: WO 99/04361 (1999-01-01), None
patent: WO 99/17093 (1999-04-01), None
patent: WO 99/52633 (1999-10-01), None
patent: WO 00/00678 (2000-01-01), None
patent: WO 00/43748 (2000-07-01), None
patent: WO 00/60345 (2000-10-01), None
patent: WO 01/09595 (2001-02-01), None
patent: WO 01/09595 (2001-02-01), None
Ahn et al., “Fluid Micropumps Based on Rotary Magnetic Actuators,” Proceedings of 1995 IEEE Micro Electro Mechanical Systems Workshop (MEMS '95), held in Amsterdam, Netherlands on Jan. 29-Feb. 2, 1995, pp. 408-412.
Andersson et al. “Consecutive Microcontact Printing—Ligands for Asymmetric Catalysis in Silicon Channel” Sensors&Actuators, B. 3997, 2001, pp. 1-7.
Benard et al., “A Titanium-Nickel Shape-Memory Alloy Actuated Micropump,” Proceedings of Transducers '97, 1997 International Conference on Solid-State Sensors and Actuators, held in Chicage, Il., Jun. 16-19, 1997, 1:361-364 (1997).
Brechtel et al.; “Control of the electroosmotic flow by metal-salt-containing buffers”, J Chromatography A, 1995, pp. 97-105, vol. 716.
Bryzek et al.; “Micromachines on the March”, IEEE Spectrum, 1994, pp. 20-31, vol. 31, No. 5.
Buchaillot et al.; “Silicon nitride thin films Young's modulus determination by an optical non-destructive method”, Jpn. J Appl Phys, 1995, pp. L794-L797, vol. 36, No. 2:6B.
Chiu et al.; “Patterned Deposition of Cells and Proteins onto Surfaces by Using Three-Dimensional Microfluidic Systems”, Proc. Natl. Acad. Sci., 2000, pp. 2408-2413, vol. 97, No. 6.
Chou et al. “A microfabricated device for sizing and sorting DNA molecules”, Applied Physical Sciences, Biophysics, Proc. Natl. Acad. Sci., 1999, pp. 11-13, vol. 96, U.S.A.
Delamarche et al.; “Patterned delivery of immunoglobulins to surfaces using microfluidic networks”, Science, 1997, pp. 779-781, vol. 276.
Duffy et al. “Patterning Electroluminescence Materials with Feature Sizes as Small as 5μm Using Elastomeric Membranes as Masks for Dry Lift-Off”, Advanced Materials, 1999, pp. 546-552, vol. 11, No. 7.
Duffy et al. “Rapid Prototyping of Microfluidic Switches in Poly(dimethylsiloxane) and Their Actuation by Electro-Osmotic Flow” Journal of Microeng, 1999, pp. 211-217, vol. 9.
Duffy et al. “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane)”, Analytical Chemistry, 1998, pp. 4974-4984, vol. 70, No. 23.
Effenhauser et al.; “Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchips”, Anal. Chem, 1997, pp. 3451-3457, vol. 69.
Effenhauser et al.; “Integrated chip-based capillary electrophoresis”, Electrophoresis, 1997, pp. 2203-2213, vol. 18.
Fahrenberg et al. “A microvalve system fabricated by thermoplastic molding”, J Micromech Microeng, 1995, pp. 169-171, vol. 5.
Fu et al.; “A microfabricated fluorescence-activated cell-sorter”, Nature Biotechnology, 1999, pp. 1109-1111, vol. 17.
Gass et al., “Integrated flow-regulated silicon micropump,” Sensors and Actuators A Physical, 1994, p. 335-338, vol. 43.
Gerlach, T., “Pumping Gases by a Silicon Micro Pump with Dynamic Passive Valves,” Proceedings of Transducers '97, 1997 International Conference on Solid-State Sensors and Actuators, held in Chicago, Il., Jun. 16-19, 1997, pp. 357-360, vol. 1.
Goll et al., “Microvalves with bistable buckled polymer diaphragms,” J. Micromech. Microeng., 1996, pp. 77-79, vol. 6.
Gravesen et al.; “Microfluids—A Review”, Journal Micromech Microeng, 1993, pp. 168-192, vol. 3.
Harrison et al., “Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip,” Science, 1993, pp. 895-897, vol. 261.
Hornbeck et al., “Bistable Deformable Mirror Device,” Spatial Light Modulators and Applications 1988 Technical Digest Series, vol. 8, Postconference Edition, Summaries of papers presented at the Spa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of forming a via in a microfabricated elastomer... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of forming a via in a microfabricated elastomer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of forming a via in a microfabricated elastomer... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3818111

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.