Superconductor technology: apparatus – material – process – Processes of producing or treating high temperature... – With melting
Patent
1994-11-07
1998-12-15
Kunemund, Robert
Superconductor technology: apparatus, material, process
Processes of producing or treating high temperature...
With melting
507701, 507702, 507703, 507704, 117 95, H01L 3924
Patent
active
058496734
ABSTRACT:
A lanthanum aluminate (LaAlO.sub.3) substrate on which thin films of layered perovskite copper oxide superconductors are formed. Lanthanum aluminate, with a pseudo-cubic perovskite crystal structure, has a crystal structure and lattice constant that closely match the crystal structures and lattice constants of the layered perovskite superconductors. Therefore, it promotes epitaxial film growth of the superconductors, with the crystals being oriented in the proper direction for good superconductive electrical properties, such as a high critical current density. In addition, LaAlO.sub.3 has good high frequency properties, such as a low loss tangent and low dielectric constant at superconductive temperatures. Finally, lanthanum aluminate does not significantly interact with the superconductors. Lanthanum aluminate can also be used to form thin insulating films between the superconductor layers, which allows for the fabrication of a wide variety of superconductor circuit elements.
REFERENCES:
patent: 4421785 (1983-12-01), Kroger
patent: 4851794 (1989-07-01), Williams et al.
patent: 4962087 (1990-10-01), Belt et al.
patent: 5024894 (1991-06-01), Chien
patent: 5030613 (1991-07-01), Chai
patent: 5126315 (1992-06-01), Nishino et al.
patent: 5159413 (1992-10-01), Calviello et al.
patent: 5256635 (1993-10-01), Sheng et al.
Amato, "High-T.sub.c Superconductors Get Squeezed," Science, vol. 261, Oct. 1, 1993, pp. 31.
Bednorz, J.G., et al., "Phase Diagram of the (LaALO.sub.3).sub.1-x (SrTiO.sub.3).sub.x Solid-solution System, for x .ltoreq.0.8," Mat. Res. Bull., 18:181-187 (1983).
Belt, R.F., et al., "Investigation of LaAl.sub.1-x Sc.sub.x O.sub.3 for a Laser Host," Journal of Crystal Growth, 70:471-475 (1984).
Brandle, C.D., "Czochralski Growth of LaAlO.sub.3,"Final Report, Union Carbide Corporation (Jul. 29., 1969).
Brown, R., et al., "Low-loss Substrate for Microwave Application of High-temperature Superconductor Films," Applied Physics Letter, 57(13):1351-1353 (1990).
Cava, R.J., et al., "Bulk Superconductivity at 36 k in La.sub.1.8 Sr.sub.0.2 CuO.sub.4," The American Physical Society, Physical Review Letters, 58(4):408-410 (Jan. 26, 1987).
Doss, "Engineer's Guide to High Temperature Superconductivity," Wiley & Sons, 1989, pp. 104-109 and 152-157.
Edelstein, et al., "Formation of the Sturcture of the Superconducting Phase of La-Sr-Cu-0 by DC Sputtering," J. Crystal Growth, 85:619-622 (1987).
Faucher, M., et al., "Optical Study of LaAlO.sub.3 :Eu at Temperatures Approaching the Rhombohedric .fwdarw. Cubic Transition," The Journal of Chemical Physics, 63(1):446-456 (1975).
Fisk, et al., "Superconductivity of Rare Earth-Barium-Copper Oxides," Solid State Communications, vol. 62, No. 11, pp. 743-744, 1987.
Fritsche, E.T., et al., "Liquidus in the Alumina-rich System La.sub.2 O.sub.3 -Al.sub.2 O.sub.3," Journal of the American Ceramic Society, 50(3):167-168 (1967).
Fulton, T.A., et al., "The Flux Shuttle --A Josephson Junction Shift Register Employing Single Flux Quanta," Proceedings of the IEEE, 61(1):28-35 (1973).
Geballe, "Paths to Higher Temperature Superconductors," Science, vol. 259, Mar. 12, 1993, pp. 1550-1551.
Geller, S., et al., "Crystallographic Studies of Perovskite-like Compounds. II. Rare Earth Aluminates," Acta. Cryst., 9:1019-1025 (1956).
Geller, S., "Crystallographic Studies of Perovskite-like Compounds. IV. Rare Earth Scandates, Vanadites,Galliates, Orthochromites," Acta Cryst., 10:243-248 (1957).
Gulyaev, Yu V., et al., "YBa.sub.2 Cu.sub.3 O.sub.7-x Films with a High-temperature Superconductivity Synthesized by Magnetron Sputtering," Sov. Tech. Phys. Lett., 14(4):339-340 (Apr. 1988).
Gurvitch, M., et al., "Preparation and Substrate Reactions of Superconducting Y-Ba-Cu-O Films," Appl. Phys. Lett., 51(13):1027-1029 (1987).
Hashimoto, T., et al., "Thermal Expansion Coefficients of High-T.sub.c Superconductors," Japanese Journal of Applied Physics, 27(2):L214-L216 (1988).
Hazen, et al., "100-k Superconducting Phases in the Tl-Ca-Ba-Cu-O System," Physical Review Letters, vol. 60, No. 16, Apr. 18, 1988, pp. 1657-1660.
Hohler, A., et al., "Fully Textured Growth of Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-.delta. Films by Sputtering on LiNbO.sub.3 Substrates," Appl Phys. Lett., 54(11):1066-1067 (1989).
Holstein, W.L., et al., "Effect of Single Crystal Substrates on the Growth and Properties of Superconducting TI.sub.2 Ba.sub.2 CaCu.sub.2 O.sub.8 Films ," J. Mater. Res., 8(5):962-972 (May 1993).
Kilner, J.A., et al., "Electrolytes for the High Temperature Fuel Cell; Experimental and Theoretical Studies of the Perovskite LaAlO.sub.3," Journal of Power Sources, 3:67-80 (1978).
Koinuma, H., et al., "Chemical Interaction between Ba.sub.2 YCu.sub.3 O.sub.7-.delta. and Substrate Materials in the Solid State," Japanese Journal of Applied Physics, 27(7):L1216-L1218 (1988).
Koinuma, H., et al., "Some Problems in the Preparation of Superconduction Oxide Films on Ceramic Substrates," Japanese Journal of Applied Physics, 26(5):L763-L765 (1987).
Kondoh, et al., "Superconductivity in Tl-Ba-Cu-O System," Solid State Communications, vol. 65, No. 11, pp. 1329-1331, 1988.
Koren, G., et al., "Epitaxial Films of YBa.sub.2 Cu.sub.3 O.sub.7-.delta. on NdGaO.sub.3 , LaGaO.sub.3 Substrates Deposited by Laser Ablation," Applied Physics Letter, 54(11):1054-1056 (1989).
Kotru, P.N., et al., "Optical Microscopic Studies on Grown and Etched Surfaces of Flux Grown LaAlO.sub.3 Crystals," Journal of Materials Science, 20:3365-3374 (1985).
Kumar, A., et al., "Textured Superconducting Thin Films of Bismuth Caprate by Laser Ablation Method," Mat. Res. Soc. Symp. Proc., 169:527-532 (1990).
Laville, F., et al., "Optical and ESR Investigations of Lanthanum Aluminates LaMg.sub.1-x Mn.sub.x O.sub.19 Single Crystals with Magnetoplumbite-like Structure," Journal of Solid State Chemistry, 49:180-187 (1983).
Lechter, et al., "Bulk Superconductivity Above 100 k in the Tl-Sr-Ca-Cu System," Solid State Communications, vol. 68, No. 6, pp. 519-521, 1988.
Lee, A.E., et al., "Epitaxially Grown Sputtered LaAlO.sub.3 Films," Applied Physics Letter, 57(19):2019-2021 (1990).
Maidukova, T.P., et al., "Formation of Lanthanum Aluminate in the Coprecipitation of Carbonate and Hydroxide Compounds of Lanthanum and Aluminum," Russian Journal of Inorganic Chemistry, 22(11):1622-1625 (1977).
Mannhart, J., et al., "Micropatterning of High T.sub.c Films with an Excimer Laser," Appl. Phys. Lett., 52(15):1271-1273 (Apr. 1988).
Menyhard, N., "Multicritical Behavior in LaA10.sub.3," Solid State Comm., 52(1):31-35 (1984).
Muller, K.A., "Critical Phenomena Near Structural Phase Transitions Studied by EPR," Ferroelectrics, 7:17-21 (1974).
Osofsky, et al., "Superconductivity in Thin Films of Bi-Sr Cu Cu-O Prepared by a Simple Flash Evaporation Technique and Bulk Superconductivity Above 100 k in a New Copper Oxide Compound," MRS Int'l. Mtg. on Adv. Mats., vol. 6, 1989, Materials Research Society.
Pamplin, Editor, "Crystal Growth," pp. 248-249, Pergamon Press, New York (1975).
Ropp, R.C., et al., "The Nature of the Alumina-rich Phase in the System La.sub.2 O.sub.3 -Al.sub.2 O.sub.3," Journal of American Ceramic Society, 61(11-12):473-475 (1978).
Ropp, R.C., et al., "Solid-State Kinetics of LaAl.sub.11 O.sub.18," Journal of American Ceramic Society, 63(7-8):416-419 (Jul-Aug 1980).
Sandstrom, R.L., et al., "Lanthanum Gallate Substrates for Epitaxial High-temperature Superconducting Thin Films," Applied Physics Letter, 53(19):1874-1876 (1988).
Scott, W.B., "U.S. to Push Aerospace Research, but May Stymie Efforts to Export Products," Aviation Week & Space Technology, pp. 39-40. (Mar. 16, 1992).
Simon, R.W., et al., "Growth of High-temperature Superconductor Thin Films On Lanthanum Aluminate Substrates," TWR Space and Technology Group, Redondo Beach, California.
Simon, R.W., et al., "Improvement of Average Film Quality in RBa.sub.2 Cu.sub.3 O.sub.7-x Sputtered Films," IEEE Transactions on Magnetics, 25(2):2433-2436 (Mar. 1989).
Simon, R.W., et al., "Low-loss Substrate for Epitaxial Growth of High-temperature Superconductor Thin Films," Applied Physics Letters, 53(2
Lee Alfred Euinam
Lee Gregory Steven
Platt Christine Elizabeth
Simon Randy Wayne
Kunemund Robert
TRW Inc.
Yatsko Michael S.
LandOfFree
Method of forming a superconductor coplanar waveguide does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of forming a superconductor coplanar waveguide, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of forming a superconductor coplanar waveguide will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1457727